If the models and specifications in this product catalogue is changed due to the change of products, we will not inform. This product Catalogue is checked by several times to be correct, but it is only for referrence. All is according to products and user Instruction.

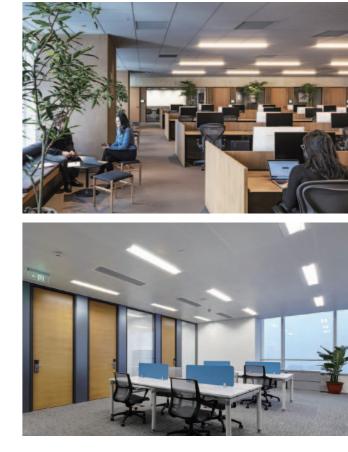
This manual uses eco-paper printing

Belt and Road's best electrical solution www.juhoele.com

WENZHOU JUHONG ELECTRIC CO., LTD.

ADD:Xiangyang Industrial Zone, Liushi, Yueqing, Zhejiang, China. TEL:+86-577-62628600 Post code: 325604 E-mail: sales@juhoele.com info@juhoele.com www.juhoele.com

Contactors Thermal overload relay Moulded case circuit breaker


Company Profile

Wenzhou Juhong Electric Co., Ltd. is located in Xiangyang Industrial Zone, Liushi City, it is the capital of electrical appliances. It is a comprehensive electrical appliance company with industrial control products as the leading, scientific research, production, manufacturing and sales.

The company is major producing AC contactors, motor protectors, thermal relays, the first to pass the ISO9001 quality system certification, ISO14001 environmental protection system certification and OHSAS18001 occupational health and safety management system certification. all products have passed CE safety certification, and some products have passed CB certification. The company strict implementation of 6S management, with beautiful environment, clean and orderly production workshop, each product has passed the inspection before the factory qualified rate reached 100%.

Our company products are exported to Asia, the Middle East, South America, Africa, customers throughout the world more than 140 countries and regions, widely used in petrochemical, metallurgy, machine tools, electrical equipment and so on. With the spirit of harmony, seeking truth, pragmatism and innovation, Juhong people uphold the management concept of creating value for customers, seeking development for employees, taking responsibility for society, serving the country for industry, striving for world famous brands and constantly striving for progress.

New journey, new starting point, new power, Juhong will bring new and old customers to create a better tomorrow.

People-oriented quality era

Every pefect classic is a starting point for innovation. The world sighs the miracles and only the poioneers create miracles. CNJUHO Electric has innovative technology and exquisite craftmanship. Ride the wind and waves to guide the safety industry into a more beautiful realm.

Production Force

The perfect production process, not only because we have advanced production process equipment and perfect detection means, in contrast, we pay more attention to the key role of people in this process. Technical experts and technical personnel to participate in, so that our products in the manufacturing, it has excellent potential value, which is to ensure the stability and reliability of our products!

Contents

01-36 Contactors Series

01	JXC AC Contactor
04	JLC1-D AC Contactor
06	JLC1 AC Contactor
09	JLC1-F AC Contactor
13	JLC2 Mechanical Interlock Contactor
17	JLC1-K AC Contactor
19	LP1 new type DC Contactor
20	LP1-D DC Contactors
22	J3TF AC Contactor
24	J3TD AC Contactor
25	J3TH AC Contactor
26	JCA2 AC Contactor
27	JMC type Magnetic Contactors
27	JMT type Thermal Overload Relays
29	CJ19 Changeover Capacitor Contactor
31	CJ20 AC Contactor
33	CJX9 AC Contactor
35	JLE1 Magnetic Starter

37-41 Thermal overload relay

- 39 JLRD New Thermal Overload Relay
- 41 J3UA Thermal Overload Relay

43-52 Moulded case circuit breaker

43	J3VE Motor Protection Circuit Breaker
47	JGV2 Motor Protection Circuit Breaker
50	JM1 Moulded Case Circuit Breaker
52	JM1L Earth Leakage Circuit Breaker

JXC-1211

JXC-3211

JXC-5011

JXC-9511

JXC AC Contactor

1. Application

JXC AC contactor is a new model with novel designation and compacted structure. they are mainly used for controlling starters and motors. It can also be combined with appropriate thermal overload relays.

2. Feature

- Rated operation current le: 6A~100A
- Rated operation voltage Ue: 220V~690V
- Rated insulation voltage: 690V (JXC-06M~100), 1000V (JXC-120~630)
- Number of poles: 3P and 4P (only for JXC-06M~12M)
- Coil control method: AC (JXC-06(M)~225), DC (JXC-06M~12M), AC/DC (JXC-265~630)
- Installation method: JXC-06M~100 rail and screw installation, JXC-120~630 screw installation

3. Operation And Installation Conditions

Туре	Operation and installation conditions						
Installation class	III						
Pollution degree	3						
Compliant standards	IEC/EN 60947-1, IEC/EN 60947-4-1, IEC/EN 60947-5-1						
Certification mark	CE						
Enclosure protection degree	JXC-06M~38: IP20; JXC-40~100: IP10; JXC-120~630: IP00						
Ambient temperature	Operation temperature limits: -35°C~+70°C. Normal operation temperature range: -5°C~+40°C. The 24-hour average temperature should not exceed +35°C. For use beyond the normal operation temperature range, see "Instructions for use in abnormal conditions" in the annex						
Altitude	Not exceeding 2000 m above sea level						
Atmosphere conditions	The relative humidity should not exceed 50% at the upper temperature limit of +70°C. A higher relative humidity is allowed at a lower temperature, e.g. 90% at +20°C. Special precautions should be taken against occasional condensation due to humidity variations.						
Installation conditions	The angle between the installation surface and the vertical surface should not exceed $\pm 5^{\circ}$.						
Shock and vibration	The product should be installed in places without significant shaking, shock, and vibration.						

4. Parameters

Main circuit parameters and technical performance

Contactor modelJXC-06JXC-09JXC-12JXC-16Conventional thermal current Ith (A)20202525Rated insulation voltage Ui (V)	JXC-18									
	JVC-TO	JXC-22								
Rated insulation voltage Ui (V)	32	32								
Rated impulse withstand voltage Uimp (kV) 8										
Rated making capacity										
Rated breaking capacity										
AC-3 6 9 12 16	18	22								
Rated $220V/230V/240V \xrightarrow{AC-4} 6 9 12 16$	18	22								
AC-3 6 9 12 16	18	22								
$\frac{100}{12} = \frac{100}{12} = 1$	18									
le (A) AC-3 3.8 6.6 8.9 8.9	12	14								
$\frac{1000}{AC-4} - \frac{1000}{3.8} - \frac{1000}{6.6} - \frac{1000}{8.9} - \frac{1000}{8.9}$	12									
220V/230V/240V 15 22 3 3	4	5.5								
Rated AC-3 2201/2301/2401 1.5 2.2 5 5 control 380V/400V/415V 2.2 4 5.5 7.5	7.5									
$\frac{5000/4000/4100}{6600/6900} - \frac{2.2}{3} - \frac{4}{5.5} - \frac{5.5}{7.5} - \frac{7.5}{7.5}$	10									
Electrical life (cycles) AC-3	10									
Mechanical life (cycles)										
Main contact 3 NO										
		NT00-32								
	NT00-32	N100-32								
Matching thermal overload relay NXR-25										
Built-in auxiliary contact $\frac{3P}{4P}$ 1 NO+1 NC										
4P										
Control circuit Contactor model JXC-06M JXC-09M JXC-12M JXC-06 JXC-09 JXC-12		JXC-18 JXC-22								
Prefabricated <u>1</u> 1~2.5 <u>1~4</u>		1.5~6								
Cable flexible wire 2 1~1.5 1~2.5		1.5~4								
$\begin{array}{c} \text{Main} & \text{connection} & \underline{\frac{2}{1}}{1} & \underline{\frac{1}{1}}{2.5} & \underline{\frac{1}{2}}{1} \\ \hline 1 & \underline{1} & \underline{1} & \underline{1} \\ \hline 1 & \underline{1} & \underline{1} & \underline{1} \\ \hline 1 & \underline{1} & \underline{1} & \underline{1} \\ \hline 1 & \underline{1} & \underline{1} & \underline{1} \\ \hline 1 & \underline{1} \\ 1 $										
Main circuitconnection $\frac{1}{2}$ $\frac{1^{-2.5}}{1^{-2.5}}$ $\frac{1^{-2.5}}{1^{-4}}$ Main circuit(mm²) m²)Hard wire $\frac{1}{2}$ $\frac{1^{-2.5}}{1^{-2.5}}$ $\frac{1^{-4}}{1^{-4}}$ connection $\frac{1}{2}$ $\frac{1^{-2.5}}{1^{-2.5}}$ $\frac{1^{-4}}{1^{-4}}$		1.5~4 1.5~6 1.5~6								
Main circuitconnection (mm^2) Hard wire Hard wire2 11~1.51~2.5 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Size of fastening screwM3M3.5		1.5~4 1.5~6								
Mainconnection $\frac{1}{2}$ $1^{-2.5}$ $1^{-2.5}$ circuit(mm²)Hard wire $\frac{1}{2}$ $\frac{1}{2}$ $1^{-2.5}$ 1^{-4} connection $\frac{1}{2}$ $1^{-2.5}$ 1^{-4}		1.5~4 1.5~6 1.5~6								
Main circuitconnection (mm^2) $Hard wire$ $\frac{2}{2}$ $1^{-2.5}$ $1^{-2.5}$ Main circuit $Hard wire$ $\frac{1}{2}$ $\frac{1}{2}$ $1^{-2.5}$ $\frac{1}{-4}$ connectionSize of fastening screwM3M3.5Tightening torque (N·m)0.80.8Prefabricated 1 $1^{-2.5}$ 1^{-4}		1.5~4 1.5~6 1.5~6 M3.5								
Main circuit connectionconnection (mm^2) Hard wire $\frac{2}{2}$ $1^{-2.5}$ $1^{-2.5}$ Main circuit connectionHard wire $\frac{1}{2}$ $\frac{1}{2}$ $1^{-2.5}$ 1^{-4} Size of fastening screwM3M3.5Tightening torque (N·m)0.80.8Prefabricated flexible wire $\frac{1}{2}$ $1^{-2.5}$ 1^{-4} Cable connectionPrefabricated flexible wire $\frac{1}{2}$ $1^{-2.5}$ 1^{-4}		1.5~4 1.5~6 1.5~6 M3.5								
Main circuit connectionconnection $1 \sim 2.5$ $1 \sim 2.5$ Main circuit connectionHard wire $\frac{1}{2}$ $1 \sim 2.5$ $1 \sim 4$ Main circuit connectionSize of fastening screwM3M3.5Size of fastening torque (N·m)0.80.8Tightening torque (N·m)0.80.8Cable connection (mm2)Prefabricated flexible wire $\frac{1}{2}$ $1 \sim 2.5$ 1112.51112.51112.5		1.5~4 1.5~6 1.5~6 M3.5								
Main circuit connectionconnection (mm^2) $1 \approx 1.5$ $1 \approx 2.5$ Main circuit connectionHard wire $\frac{1}{2}$ $1 \approx 2.5$ $1 \approx 4$ Main circuit connectionSize of fastening screwM3M3.5Size of fastening torque (N·m) Tightening torque (N·m)0.80.8ControlPrefabricated flexible wire $\frac{1}{2}$ $1 \approx 2.5$ ControlCable 		1.5~4 1.5~6 1.5~6 M3.5								
Main circuitconnection (mm^2) Hard wire2 11~1.51~2.5Main circuit (mm^2) Hard wire1 21~2.51~4Main connectionSize of fastening screwM3M3.5Tightening torque (N·m)0.80.80.8Control circuitPrefabricated flexible wire1 21~2.5Control 		1.5~4 1.5~6 1.5~6 M3.5								
Main circuitconnection (mm^2) Hard wire2 Hard wire1~1.51~2.5Main circuit (mm^2) Hard wire1 21~2.51~4Size of fastening screwM3M3.5Tightening torque (N·m)0.80.8Control circuitPrefabricated flexible wire1 21~2.5Control 		1.5~4 1.5~6 1.5~6 M3.5								
Main circuitconnection (mm^2) $Hard wire$ $\frac{2}{2}$ $1^{-2.5}$ 1^{-4} Main circuit mm^2) $Hard wire$ $\frac{1}{2}$ $1^{-2.5}$ 1^{-4} Size of fastening screwM3M3.5Tightening torque (N-m)0.80.8Control circuit connectionPrefabricated flexible wire $\frac{1}{2}$ $1^{-2.5}$ Control circuit connection $Hard wire$ $\frac{1}{2}$ $1^{-2.5}$ 1^{-4} Main Size of fastening screw $M3$ $1^{-2.5}$ 1^{-4} Main 		1.5~4 1.5~6 1.5~6 M3.5								
Main circuit connectionConnection (mm²)Hard wire21~1.51~2.5Main circuit connectionHard wire11~2.51~4Size of fastening screwM3M3.5Tightening torque (N·m)0.80.8Control circuit connectionPrefabricated flexible wire11~2.5Prefabricated connection 	JXC-16 J	1.5~4 1.5~6 M3.5 0.8 XC-18 JXC-22								
Main circuit connection connection (mm ²) Inclusion mice 2 1×1.5 1×2.5 Main circuit connection Mard wire 1 1 1×2.5 1~4 Size of fastening screw M3 M3.5 1~4 1~4 Size of fastening screw M3 0.8 0.8 0.8 Tightening torque (N·m) 0.8 0.8 1~2.5 1~4 Control circuit connection flexible wire 1 1~2.5 1~4 1~2.5 Control circuit connection flexible wire 1 1~2.5 1~4 1~2.5 Size of fastening screw Hard wire 1 1~2.5 1~4 1~4 Size of fastening screw M3 M3.5 1~4 1~4 1~4 Size of fastening screw M3 M3.5 0.8 0.8 0.8 0.8 Contactor model JXC-06M JXC-09M JXC-12M JXC-06 JXC-09 JXC-12 Coil control AC 50Hz 24, 36, 48, 110, 127, 220, 230, 240, 380, 415 24, 36, 48, 110, 127, 220, 23	JXC-16 J	1.5~4 1.5~6 M3.5 0.8 XC-18 JXC-22								
Main circuit connection connection (mm²) Hard wire 2 1~1.5 1~2.5 Main circuit connection Hard wire 1 1~2.5 1~4 1~4 Size of fastening screw M3 M3.5 1~4 Tightening torque (N·m) 0.8 0.8 0.8 Control circuit connection Prefabricated flexible wire 1 1~2.5 1~4 Connection Prefabricated flexible wire 1 1~2.5 1~4 Connection Hard wire 1 1~2.5 1~4 Connection Hard wire 1 1~2.5 1~4 Size of fastening screw 1 1~2.5 1~4 1~4 Size of fastening screw M3 M3.5 1~4 1~4 Size of fastening screw M3 0.8 0.8 0.8 Contactor model JXC-06M JXC-09M JXC-12M JXC-06 JXC-09 JXC-12 Coil control power supply AC 50Hz 24, 36, 48, 110, 127, 220, 230, 240, 380, 415 24, 36, 48, 110, 127, 220, 230, 2 -	JXC-16 J	1.5~4 1.5~6 M3.5 0.8 XC-18 JXC-22								
Main circuit connection circuit connection (mm ²) next loc wite 2 1~1.5 1~2.5 Main circuit	JXC-16 J	1.5~4 1.5~6 M3.5 0.8 XC-18 JXC-22								
Main circuit connection connection (mm ²) Hard wire Hard wire 2 1 1×1.5 1×2.5 Main circuit connection Hard wire 1 2 1×2.5 1×4 Size of fastening screw M3 M3.5 1×4 Size of fastening screw M3 0.8 0.8 Tightening torque (N-m) 0.8 0.8 0.8 Control circuit flexible wire 1 2 1×2.5 1×4 Control circuit flexible wire 1 2 1×2.5 1×4 Connection flexible wire 1 2 1×2.5 1×4 Size of fastening screw M3 M3.5 0.8 0.8 Contactor model JXC-06M JXC-09M JXC-12M JXC-06 JXC-09 JXC-12 power supply DC 24, 36, 48, 110, 127, 220, 230, 240, 380,	JXC-16 J	1.5~4 1.5~6 M3.5 0.8 XC-18 JXC-22								
Main circuit connection connection (mm ²) nextice mic 2 1×1.5 1×2.5 Main circuit connection Hard wire 1 1×2.5 1×4 1×4 Size of fastening screw M3 M3.5 1×4 1×4 1×4 Size of fastening screw M3 M3.5 0.8 0.8 0.8 Control circuit connection flexible wire 1 1×2.5 1×4 1×4 Control circuit connection flexible wire 1 1×2.5 1×4 1×4 Size of fastening screw flexible wire 1 1×2.5 1×4 1×2.5 Control circuit connection flexible wire 1 1×2.5 1×4 1×4 Size of fastening screw M3 M3.5 1×4 1×4 1×4 Size of fastening screw M3 0.8 0.8 0.8 0.8 Contactor model JXC-06M JXC-09M JXC-12M JXC-06 JXC-09 JXC-12 power supply DC 24, 36, 48, 110, 127, 220, 230, 240, 380, 4	JXC-16 J	1.5~4 1.5~6 M3.5 0.8 XC-18 JXC-22								
Main circuit connection connection (mm ²) module mile 2 121.5 122.5 Main circuit connection Hard wire 1 1-2.5 1-4 1-4 Size of fastening screw M3 M3.5 0.8 0.8 Tightening torque (N-m) 0.8 0.8 1-4 1-4 Control circuit connection flexible wire 1 1-2.5 1-4 Main M3 0.8 0.8 1-4 Control circuit connection flexible wire 1 1-2.5 1-4 M3 1-2.5 1-4 1-4 1-4 Control circuit connection flexible wire 1 1-2.5 1-4 Size of fastening screw 1 1-2.5 1-4 1-4 M3 0.8 0.8 0.8 0.8 Contactor model JXC-06M JXC-09M JXC-12M JXC-06 JXC-09 JXC-12 Coil control power supply DC 24, 36, 48, 110, 127, 220, 230, 240, 380, 415 24, 36, 48, 110, 127, 220, 230, 24 - Release AC: (20%~70%) Us; DC: (10%~70%) Us (70%~120%) Us <td< td=""><td>JXC-16 J</td><td>1.5~4 1.5~6 M3.5 0.8 XC-18 JXC-22</td></td<>	JXC-16 J	1.5~4 1.5~6 M3.5 0.8 XC-18 JXC-22								
Main circuit connection connection (mm ²) nextice mic 2 1×1.5 1×2.5 Main circuit connection Hard wire 1 1×2.5 1×4 1×4 Size of fastening screw M3 M3.5 1×4 1×4 1×4 Size of fastening screw M3 M3.5 0.8 0.8 0.8 Control circuit connection flexible wire 1 1×2.5 1×4 1×4 Control circuit connection flexible wire 1 1×2.5 1×4 1×4 Size of fastening screw flexible wire 1 1×2.5 1×4 1×2.5 Control circuit connection flexible wire 1 1×2.5 1×4 1×4 Size of fastening screw M3 M3.5 1×4 1×4 1×4 Size of fastening screw M3 0.8 0.8 0.8 0.8 Contactor model JXC-06M JXC-09M JXC-12M JXC-06 JXC-09 JXC-12 power supply DC 24, 36, 48, 110, 127, 220, 230, 240, 380, 4	JXC-16 J	1.5~4 1.5~6 M3.5 0.8 XC-18 JXC-22								

	O + +				JXC-06		11/0	10	11/0 4 0	11/0 4 0	D.	$\sim \sim \sim$			
Conventio	Contacto		entional thermal current Ith (A)			JXC-09		2-12	JXC-16	JXC-18	1X	(C-22			
					20	20		25	25	32		32			
	ulation vol			10											
	ulse withsta		e Uimp (k	(V)				8							
	king capa														
Rated bre	aking cap	acity								18					
	220V/23	80V/240	/ <u>AC-3</u>		6	9		12 16				22			
Rated		,	AC-4		6	9		12	16	18		22			
operation	eration 380V/400V/415V		/ AC-3		6	9	:	12	16	18		22			
current		101/ 4101	AC-4		6	9		12	12	18		18			
le (A)	660V/69		AC-3		3.8	6.6		3.9	8.9	12		14			
	0000/09	00	AC-4		3.8	6.6	8	3.9	8.9	12		12			
Rated	AC-3	220V/2	230V/24	٥V	1.5	2.2		3	3	4		5.5			
control		380V/4	100V/41	5V	2.2	4	Ę	5.5	7.5	7.5		11			
power	(kW)	660V/6	690V		3	5.5	-	7.5	7.5	10		11			
Electrical	life (cycles	s)	AC-3							-					
Mechanic	al life (cyc	les)													
Main cont	tact							3 N(C						
Fuse supp	blied for S	CPD			NT00-20	NT00-2	0 NT(00-25	NT00-25	NT00-32	2 N	00-32			
	hermal ove		v					NXR-2	25						
0			<u> </u>			1 NO+1 NC									
			3P												
Built-in au	ixiliary cor	ntact	3P 4P												
Built-in au	uxiliary cor	ntact	3P 4P												
			4P							120.40	120.40				
	uxiliary cor ol circuit	Conta	4P			JXC-09M JXC-:			09 JXC-12	JXC-16	JXC-18	JXC-2			
	ol circuit	Conta Prefabr	4P actor mod	1	1~2.5	JXC-09M JXC-:	1~4		09 JXC-12	JXC-16	1.5~6	JXC-2			
Contro		Conta Prefabr flexible	4P actor mod	1 2	1~2.5 1~1.5	JXC-09M JXC-:	1~4 1~2	.5	09 JXC-12	JXC-16	1.5~6 1.5~4	JXC-2			
Contro Main	ol circuit Cable	Conta Prefabr flexible	4P actor mod icated wire	1 2 1	1~2.5 1~1.5 1~2.5	JXC-09M JXC-:	1~4 1~2 1~4	.5	09 JXC-12	JXC-16	1.5~6 1.5~4 1.5~6	JXC-2			
Contro Main circuit	Cable connectio (mm ²)	Conta Prefabi flexible Hard v	4P actor mod icated wire vire	1 2	1~2.5 1~1.5 1~2.5 1~2.5	JXC-09M JXC-:		.5	09 JXC-12	JXC-16	1.5~6 1.5~6 1.5~6	JXC-2			
Contro Main circuit	Cable connectio (mm ²) Size of fa	Conta Prefabr flexible Hard v astening	4P actor moo icated wire vire screw	1 2 1	1~2.5 1~1.5 1~2.5 1~2.5 M3	JXC-09M JXC-:	1~4 1~2 1~4 1~4 1~4 M3.	.5	09 JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5	JXC-2			
Contro Main circuit	Cable connectio (mm ²)	Conta Prefabr flexible Hard v astening	4P actor moo icated wire vire screw	1 2 1 2	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8	JXC-09M JXC-:	1~4 1~2 1~4 1~4 M3.3 0.8	.5	09 JXC-12	JXC-16	1.5~6 1.5~6 1.5~6	JXC-2			
Contro Main circuit	Cable connectio (mm ²) Size of fa	Conta Prefabi flexible Hard w astening torque Prefab	4P actor moo icated wire /ire screw (N-m) ricated	1 2 1 2	1~2.5 1~1.5 1~2.5 M3 0.8 1~2.5	JXC-09M JXC-:	1~4 1~2 1~4 1~4 M3.3 0.8 1~4	.5	09 JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5	JXC-2			
Contro Main circuit connection	Cable connectio (mm ²) Size of fa Tightenir Cable	Conta Prefabi flexible Hard w astening torque Prefab flexible	4P actor moo icated wire /ire screw (N-m) ricated	1 2 1 2 1 2	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5	JXC-09M JXC-:	1~4 1~2 1~4 1~4 0.8 1~4 1~4	.5	09 JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5	JXC-2			
Contro Main circuit connection	Cable connectio (mm ²) Size of fa	Conta Prefabi flexible Hard v astening torque Prefab flexible	4P actor moo icated wire vire screw (N·m) ricated wire	1 2 1 2 1 2 1 2 1	$ \begin{array}{r} 1 \sim 2.5 \\ 1 \sim 1.5 \\ 1 \sim 2.5 \\ 1 \sim 2.5 \\ \hline M3 \\ 0.8 \\ 1 \sim 2.5 \\ 1 \sim 1.5 \\ 1 \sim 2.5 \\ \hline 1 \sim 2.5 \\ \hline \end{array} $	JXC-09M JXC-:	1~4 1~2 1~4 1~4 0.8 1~4 1~4 0.8 1~4 1~4	.5	09 JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5	JXC-2			
Contro Main circuit connection Control circuit	Cable connectio (mm ²) Size of fa Tightenin Cable connectio (mm2)	Conta Prefabi flexible Hard w astening torque Prefab flexible	4P actor moo icated wire vire screw (N·m) ricated wire	1 2 1 2 1 2	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5	JXC-09M JXC-:	1~4 1~2 1~4 1~4 0.8 1~4 1~4	.5	09 JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5	JXC-2			
Contro Main circuit connection Control circuit	Cable connectio (mm ²) Size of fa Tightenin Cable connectio (mm2)	Conta Prefabi flexible Hard v astening torque Prefab flexible Hard v	4P actor moo icated wire //ire screw (N-m) ricated e wire //ire	1 2 1 2 1 2 1 2 1	$ \begin{array}{r} 1 \sim 2.5 \\ 1 \sim 1.5 \\ 1 \sim 2.5 \\ 1 \sim 2.5 \\ \hline M3 \\ 0.8 \\ 1 \sim 2.5 \\ 1 \sim 1.5 \\ 1 \sim 2.5 \\ \hline 1 \sim 2.5 \\ \hline \end{array} $	JXC-09M JXC-:	1~4 1~2 1~4 1~4 0.8 1~4 1~4 0.8 1~4 1~4	.5	09 JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5	JXC-2			
Contro Main circuit connection Control circuit	Cable connectio (mm ²) Size of fa Tightenin Cable connectio (mm2)	Conta Prefabi flexible Hard w astening torque Prefab flexible Hard w	4P actor mod vicated wire vire screw (N·m) ricated e wire vire	1 2 1 2 1 2 1 2 1	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5 1~2.5 1~2.5	JXC-09M JXC-:	$ \begin{array}{c} 1^{-4} \\ 1^{-2} \\ 1^{-4} \\ 1^{-4} \\ M3.^{-1} \\ 0.8 \\ 1^{-4} \\ 1^{-2} \\ 1^{-4$.5	09 JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5	JXC-2			
Contro Main circuit connection Control circuit connection	Cable connectio (mm ²) Size of fa Tightenir Cable connectio (mm2) Size of fa Tightenir	Conta Prefabi flexible Hard w astening : Prefab flexible Hard w astening : ng torque	4P actor moo icated wire //ire screw //ire //ire screw (N·m)	1 2 1 2 1 2 1 2	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8		1~4 1~2 1~4 1~4 M3. 0.8 1~4 1~2 1~4 1~4 1~4 1~4 M3. 0.8	.5			1.5~6 1.5~6 1.5~6 M3.5 0.8				
Contro Main circuit connection Control circuit connection	Cable connectio (mm ²) Size of fa Tightenir Cable connectio (mm2) Size of fa Tightenir	Conta Prefabi flexible Hard w astening flexible Hard w astening astening hard w	4P actor mod vire vire screw (N-m) ricated e wire vire vire screw (N-m) JXC-06M	1 2 1 2 1 2 1 2	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5 1~2.5 1~2.5 1~2.5 M3 0.8 JXC-09M	JXC-12M	1~4 1~2 1~4 M3. 0.8 1~4 1~2 1~4 1~2 1~4 1~4 M3. 0.8 JXC-06	.5 5 .5 5 JXC-09	JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5 0.8				
Contro Main sircuit connection Control sircuit connection Conta	Cable connectio (mm ²) Size of fa Tightenir Cable connectio (mm2) Size of fa Tightenir Size of fa Tightenir	Conta Prefabi flexible Hard w astening flexible Prefab flexible Hard w astening astening DHz	4P actor mod icated wire vire screw (N·m) ricated wire vire vire screw (N·m) JXC-06M 24, 36, 48,	1 2 1 2 1 2 1 2 1 2 1 2	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5 1~2.5 1~2.5 1~2.5 M3 0.8 JXC-09M 0, 127, 220, 23		1~4 1~2 1~4 M3. 0.8 1~4 1~2 1~4 1~2 1~4 1~4 M3. 0.8 JXC-06	.5 5 .5 5 JXC-09		JXC-16	1.5~6 1.5~6 1.5~6 M3.5 0.8				
Contro Main sircuit connection Control sircuit connection Conta	Cable connectio (mm ²) Size of fa Tightenir Cable connectio (mm2) Size of fa Tightenir Size of fa Tightenir actor mod I AC 50 ply DC	Conta Prefabi flexible Hard v astening : ng torque Hard v astening : ng torque el DHz	4P actor mod iicated wire //ire screw (N-m) ricated e wire //ire screw (N-m) JXC-06M 24, 36, 48, 24, 48, 1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 10,	1~2.5 1~1.5 1~2.5 M3 0.8 1~2.5 1~2.5 1~2.5 1~2.5 1~2.5 1~2.5 1~2.5 M3 0.8 JXC-09M 0, 127, 220, 23 220	JXC-12M	1~4 1~2 1~4 M3.3 0.8 1~4 1~2 1~4 1~2 1~4 1~4 1~4 2.4 3.3 0.8 JXC-06 24, 36, 43	.5 5 .5 5 JXC-09 8, 110, 12	JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5 0.8				
Contro Main sircuit connection Control sircuit connection Conta	Cable connectio (mm ²) Size of fa Tightenir Cable connectio (mm2) Size of fa Tightenir Size of fa Tightenir actor mod I AC 50 Ply DC Pull-in	Conta Prefabi flexible Hard w astening torque Prefab flexible Hard w astening torque el DHz	4P actor mod icated wire //ire screw (N·m) ricated e wire //ire screw (N·m) JXC-06M 24, 36, 48, 24, 48, 1 75%~12	1 2 1 2 1 2 1 2 1 2 1 2 2 0%	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5 1~2.5 1~2.5 1~2.5 M3 0.8 JXC-09M 0, 127, 220, 23 220) Us	JXC-12M 0, 240, 380, 415	1~4 1~2 1~4 M3. 0.8 1~4 1~2 1~4 1~2 1~4 1~2 1~4 1~4 2. 4. 3. 0.8 JXC-06 24, 36, 43 - (70%~12)	.5 5 5 JXC-09 8, 110, 12 0%) Us	JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5 0.8				
Contro Main Sircuit connection Control Sircuit connection Conta	Cable connectio (mm ²) Size of fa Tightenir Cable connectio (mm2) Size of fa Tightenir Size of fa Tightenir Act 50 ply DC Pull-in Relea	Conta Prefabi flexible Hard w astening flexible Prefab flexible Hard w astening flexible Hard w astening flexible Hard w astening	4P actor mod icated wire vire screw (N-m) ricated e wire vire vire screw (N-m) JXC-06M 24, 36, 48, 24, 48, 11 75%~12 AC: (20%	1 2 1 2 1 2 1 2 1 2 1 2 2 0%	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5 1~2.5 1~2.5 1~2.5 M3 0.8 JXC-09M 0, 127, 220, 23 220) Us	JXC-12M	1~4 1~2 1~4 M3. 0.8 1~4 1~2 1~4 1~2 1~4 1~2 1~4 1~4 2. 1~4 1~4	.5 5 5 JXC-09 8, 110, 12 0%) Us	JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5 0.8				
Contro Main circuit connection Control circuit connection Conta Conta	Cable connectio (mm ²) Size of fa Tightenin Cable connectio (mm2) Size of fa Tightenin Size of fa Tightenin AC 50 ply DC Pull-lin Relea Start	Conta Prefabi flexible Hard w astening a ng torque Prefabi flexible Hard w astening a ng torque el DHz ase / A	4P actor mod icated wire vire screw (N·m) ricated e wire vire screw (N·m) JXC-06M 24, 36, 48, 24, 48, 1 75%~12 AC: (20% 25~40	1 2 1 2 1 2 1 2 1 2 1 2 2 0%	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5 1~2.5 1~2.5 1~2.5 M3 0.8 JXC-09M 0, 127, 220, 23 220) Us	JXC-12M 0, 240, 380, 415	1~4 1~2 1~4 1~4 0.8 1~4 1~4 1~4 1~4 1~4 1~4 1~2 1~4	.5 5 5 JXC-09 8, 110, 12 0%) Us	JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5 0.8				
Contro Main circuit connection Control circuit connection Conta Conta	Cable connectio (mm ²) Size of fa Tightenin Cable connectio (mm2) Size of fa Tightenin Size of fa Size of fa Tightenin AC 50 ply DC Pull-in Relea Start Hold	Conta Prefabi flexible Hard w astening : ng torque Prefabi flexible Hard w astening : hard w astening : DHz 2 n (ase / 2 2 2 2 2 2 2 2 2 2 2 2 2	4P actor mod icated wire //ire screw (N-m) ricated e wire //ire screw (N-m) JXC-06M 24, 36, 48, 1 75%~12 AC: (20% 25~40 2~7	1 2 1 2 1 2 1 2 1 2 1 2 2 0%	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5 1~2.5 1~2.5 1~2.5 M3 0.8 JXC-09M 0, 127, 220, 23 220) Us	JXC-12M 0, 240, 380, 415	1~4 1~2 1~4 1~4 M3.3 0.8 1~4 1~4 1~4 1~4 1~4 1~4 1~4 1~4 1~4 1~4 1~4 1~4 1~4 1~4 0.8 JXC-06 24, 36, 48 - (70%~124) (20%~65) 40~60 9.5	.5 5 5 JXC-09 8, 110, 12 0%) Us	JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5 0.8				
Contro Main circuit connection Control circuit connection	Cable connectio (mm ²) Size of fa Tightenin Cable connectio (mm2) Size of fa Tightenin Size of fa Tightenin AC 50 ply DC Pull-lin Relea Start	Conta Prefabi flexible Hard w astening : ng torque Prefabi flexible Hard w astening : hard w astening : DHz 2 n (ase / 2 2 2 2 2 2 2 2 2 2 2 2 2	4P actor mod icated wire vire screw (N·m) ricated e wire vire screw (N·m) JXC-06M 24, 36, 48, 24, 48, 1 75%~12 AC: (20% 25~40	1 2 1 2 1 2 1 2 1 2 1 2 2 0%	1~2.5 1~1.5 1~2.5 1~2.5 M3 0.8 1~2.5 1~1.5 1~2.5 1~2.5 1~2.5 M3 0.8 JXC-09M 0, 127, 220, 23 220) Us	JXC-12M 0, 240, 380, 415	1~4 1~2 1~4 1~4 0.8 1~4 1~4 1~4 1~4 1~4 1~4 1~2 1~4	.5 5 5 JXC-09 8, 110, 12 0%) Us	JXC-12	JXC-16	1.5~6 1.5~6 1.5~6 M3.5 0.8	JXC-2			

CNJUHO[°]

	Contact	or model		JXC-25	JXC-32	JXC-38	JXC-40	JXC-50	JXC-65	JXC-75	JXC-85	JXC-100		
Conventio	onal therm	al curren	t Ith (A)	40	50	50	60	80	80	90	100	110		
Rated ins	sulation vo	Itage Ui (\	V)					690						
			ge Uimp (kV)					8						
	aking capa	-	· · · · ·	Making current: 10×Ie (AC-3) or 12×Ie (AC-4)										
	eaking cap	-		Breaking current: 8×Ie (AC-3) or 10×Ie (AC-4)										
		-	AC-3	25	32	38	40	50	65	75	85	100		
Rated	220V/23	0V/240V	/	25	32	38	40	50	65	75	85	100		
operation			AC-3	25	32	38	40	50	65	75	85	100		
current	380V/40	0V/415V	AC-4	25	32	38	40	50	65	75	85	100		
le (A)			AC-3	18	22	22	34	39	42	42	49	49		
	660V/69	VO	AC-4	18	22		34	39	42	42	49	49		
		2201//2	230V/240V	5.5	7.5	9	11	15	18.5	22	22	25		
Rated control	AC-3		00V/415V	11	15	18.5	18.5	22	30	37	37	45		
power	(kW)	660V/6		15	18.5	18.5	30	37	37	37	45	45		
	ectrical life (cycles	0000/0	AC-3	10	1.2×10^{6}	10.0	30	1×10 ⁶	51	51	0.8×10 ⁶	40		
Electrical	life (cycle	5)	AC-3 AC-4		1.2×10		See el	ectrical life	011/2/0		0.8^10			
Maabaaii	allifa (au		AU-4		1 × 107		See er		curve		0.05×10	7		
	cal life (cyc	ies)			1×10 ⁷ 0.9×10 ⁷ 0.65×									
Main con		000						3 NO	~000		~0100	-0405		
	plied for S			gG40	gG50	gG50	gG63	gG80	gG80	gG100	gG100	gG125		
watching	thermal ov	erioad rela	ay 3P	NXR-25					~					
Built-in au	uxiliary co	ntact	4P				L	. NO + 1 N	0					
Contr	ol circuit	Conta	actor model	JXC-25	JXC-32	JXC-38	JXC-40	JXC-50	JXC-65	JXC-75	JXC-85	JXC-100		
	0.11	Prefabi		1.5~10	1.5~10 6~25 10~35									
	Cable connectio	flexible	wire 2	1.5~6			4~10			6~16				
Main circuit	(mm ²)	Hard v	vire <u>1</u>	1.5~6			6~25			10~35				
connectior	n	i lara i	2	1.5~6			4~10			6~16				
	Size of f	astening	screw	M4						M8				
	Tighteni	ng torque					M8			M8				
				1.2			M8 6			M8 6				
			ricated 1											
	Cable	flexible	ricated 1	1.2										
	Cable connectio (mm²)	flexible	ricated $\frac{1}{2}$ $\frac{1}{1}$	1.2 1~4										
	connectio (mm²)	flexible	ricated $\frac{1}{2}$ $\frac{1}{1}$	1.2 1~4 1~2.5										
circuit	connectio (mm ²) n	flexible	$\frac{1}{2}$ wire $\frac{1}{2}$ vire $\frac{1}{2}$	1.2 1~4 1~2.5 1~4										
Control circuit connectior	connectio (mm ²) n Size of f	flexible n Hard v	ricated wire $\frac{\frac{1}{2}}{\frac{1}{2}}$ vire $\frac{\frac{1}{2}}{\frac{1}{2}}$ screw	1.2 1~4 1~2.5 1~4 1~4										
circuit connectior	connectio (mm ²) n Size of f	flexible Hard v astening ng torque	ricated wire $\frac{\frac{1}{2}}{\frac{1}{2}}$ vire $\frac{\frac{1}{2}}{\frac{1}{2}}$ screw	1.2 1~4 1~2.5 1~4 1~4 M3.5	JXC-38	JXC-40		0 JXC	-65 JX	6	JXC-85	 JXC-100		
circuit connectior Cont Coil contr	connectio (mm ²) n Size of f Tighteni tactor mod	flexible Hard v astening ng torque	ricated wire $\frac{1}{2}$ vire $\frac{1}{2}$ screw $\frac{1}{2}$	1.2 1~4 1~2.5 1~4 1~4 M3.5 0.8			G JXC-5	JXL 0;	-65 JX	6	JXC-85	 JXC-100		
circuit connectior Cont Coil contr power suj	connectio (mm ²) n Size of f Tighteni tactor mod	Hard v Hard v astening ng torque	ricated wire $\frac{1}{2}$ wire $\frac{1}{2}$ screw e (N-m) JXC-25	1.2 1~4 1~2.5 1~4 1~4 0.8 JXC-32 110, 127,			G JXC-5	O JXL 0:	-65 JX	6	JXC-85	JXC-100		
circuit connectior Cont Coil contr power suj Control	connectio (mm ²) n <u>Size of f</u> Tighteni tactor moo rol pply <u>AC 5</u> <u>Pull</u>	flexible Hard v astening ng torque lel 60Hz in	ricated 1 wire 1 vire 1 screw 2 (N-m) JXC-25 24, 36, 48,	1.2 1~4 1~2.5 1~4 1~4 M3.5 0.8 JXC-32 110, 127, US			G JXC-5	00 JXC	-65 JX	6	JXC-85	 JXC-100		
circuit connectior Cont Coil contr power su Control voltage	connectio (mm ²) n Size of f Tighteni tactor mod rol pply AC 5 Pull- Rele	flexible Hard v astening ng torque lel 60Hz in ase	ricated 1 wire 1 vire 2 screw 2 (N·m) JXC-25 24, 36, 48, 70%~120% (20%~65%)	1.2 1~4 1~2.5 1~4 1~4 M3.5 0.8 JXC-32 110, 127, US		240, 380, 4	6 JXC-5 415	O JXL 0;		6	JXC-85	 JXC-100		
circuit connectior	connectio (mm ²) n Size of f Tighteni tactor moo rol pply AC 5 Pull- Rele Rele age	flexible Hard v astening ng torque lel 0Hz in ase t	ricated wire 1 2 1 2 1 2 3 2 1 2 2 3 2 4, 36, 48, 70%~120% (20%~65%) 50~70	1.2 1~4 1~2.5 1~4 1~4 M3.5 0.8 JXC-32 110, 127, US		240, 380, 4 160~21	6 JXC-5 415	50 JXC	190	6 C-75	JXC-85	JXC-100		
circuit connection Cont Coil contr power sup Control voltage Coil avera	connectio (mm ²) n Size of f Tighteni tactor moo rol pply AC 5 Pull- Rele age A)	flexible Hard v astening ng torque in ase t I	ricated 1 wire 1 vire 2 screw 2 (N·m) JXC-25 24, 36, 48, 70%~120% (20%~65%)	1.2 1~4 1~2.5 1~4 1~4 M3.5 0.8 JXC-32 110, 127, US		240, 380, 4	6 JXC-5 415	50 JXC	190	6 C-75 	JXC-85	JXC-100		

JLC1-D AC Contactor

1. General

- Electric ratings: AC50/60Hz,690v,up to 95A;
- Utilization category:AC-3,AC-4;
- Altitude:≤2000m;
- Ambient temperature: -5°C~+40°C;
- Mounting category: III;
- exceed ±5°;
- Standard: IEC/EN 60947-4-1, IEC/EN 60947-5-1.
- Gontrol Goil valtage(AC Goil Operation).

Volt	ts(VAC)	24	36	42	48	110	127	220	230	240	380	415	440	480	500	600
	50Hz	B5	C5	D5	E5	F5	G5	M5	P5	u5	Q5	N5	R5	-	S5	Y5
Code	60Hz	B6	-	D6	E6	F6	G6	M6	-	u6	Q6	-	R6	Т6	-	-
	50/60Hz	B7	-	D7	E7	F7		M7	Ρ7	-	Q7	N7	R7	-	-	-

JLC1-D18

JLC1-D12

JD Code 2. Type Designation

12

JL C 1 - 🗆 🗆 🗆

Volts(VDC)

JLC1-D40A

JLC1-D95

• Application: remote making & breaking circuits; protect circuit from over-load when assembling with thermal over-load relay; frequent start-up and control of AC contactor;

• Mounting conditions: inclination between the mounting planeand the verticall plane should not

Control Coil Voltage(DC Coil Operation)

24	36	48	110	220
BD	CD	ED	FD	MD

-	2DC energian Displance energian
	Z:DC operation Blank:AC operation
1]	Number af contacts
-	10:3N/0 main contacts+ 1N/0 auxiliary
	contact(9A,12A,18A,25A,32A)
(01: 3N/0 main contacts+1N/C auxiliary
	contact (9A,12A,18A,25A,32A)
-	11: 3N/0 main contacts+1N/0 and 1 N/C auxilliary
L	contact (40A,50A,65A,80A,95A)
—— E	Basic specification, expresspd with the rated
C	operational current (380V/400V,AC3)
——— (Design sequence No.
(Contactor
(Company code

3. Main Technical Parameter

	i alametei											Table
Туре		JLC1- D09	JLC1 -D12	JLC1 -D18	JLC1 -D25	JLC1 -D32	JLC1 -D38	JLC1 -D40	JLC1 -D50	JLC1 -D65	JLC1 -D80	JLC1 -D95
Rated working current AC-3Ue≤440V	le (A)	9	12	18	25	32	38	40	50	65	80	95
Rated hear current Ith (A)		25	25	32	40	50	50	60	80	80	125	125
Rated insulation voltage Ui (V)		690	690	690	690	690	690	1000	1000	1000	1000	1000
Rated operating voltage Ue (V) Max		690	690	690	690	690	690	1000	1000	1000	1000	1000
	220/230V	2.2	3	4	5.5	7.5	9	11	15	18.5	22	25
	380/400V	4	5.5	7.5	11	15	18.5	18.5	22	30	37	45
Rated operational	415/440V	4	5.5	9	11	15	18.5	22	25/30	37	45	45
power in AC-3 Pe (KW)	500V	5.5	7.5	10	15	18.5	18.5	22	30	37	55	55
	660/690V	5.5	7.5	10	15	18.5	18.5	30	33	37	45	45
	220/230V	1.5	1.5	2.2	3	4	4	4	5.5	7.5	7.5	9
Rated operational	380/400V	2.2	3.7	4	5.5	7.5	7.5	9	11	11	15	15
	415/440V	2.2	3	3.7	5.5	7.5	7.5	9/11	11	11/15	15	15
power in AC-4 Pe (KW)	500V	3	4	5.5	7.5	9	9	11	15	18.5	22	22
	660/690V	4	5.5	7.5	10	11	11	15	18.5	22	25	25
Frequency of operation (I	/h)	1200	1200	1200	1200	1000	1000	1000	1000	1000	750	750
Electrical endurance	AC-3	100	100	100	100	80	80	80	60	60	60	60
(x10 ⁴)	AC-4	20	20	20	20	20	20	15	15	15	10	10
Mechanical endurance (x10 ⁶)		15	15	15	15	15	15	6	6	6	4	4
Operating voltage rang	ge of coil			Close	voltage:(0.85~1.1	L)Us	Open voltage:(20%~75%)Us				
Power consumption of	Atracting	8	8	8	11	11	20	20	20	20	20	20
coil (VA)	Starting	70	70	110	110	110	110	200	200	200	200	200
Rated insulation voltage of auxitiary contacts (V)	690	690	690	690	690	690	690	690	690	690	690	690
Conventional thermal current of auxitiary contacts (A)	10	10	10	10	10	10	10	10	10	10	10	10
Auxitiary contacts spee	ecification					AC	C-15:360	VA		Ľ	C-13:33	N
Auxiliary contacts spec	cilication					AC	-13.300	٧A		L	/C-13.33	~~

4. Standard Control Circuit Voltage

4. Stan	idard C	ontrol C	ircuit vo	oitage									Table2
Volts	24	42	48	110	220	230	240	380	400	415	440	500	660
50Hz	B5	D5	E5	F5	M5	P5	U5	Q5	V5	N5	R5	S5	Y5
60Hz	B6	D6	E6	F6	M6	P6	U6	Q6	-	-	R6		
50/60Hz	B7	D7	E7	F7	M7	P7	U7	Q7	V7	N7	R7		

JLC1 AC Contactor

• Utilization category: AC-3, AC-4;

• Altitude: \leq 2000m;

exceed ±5°;

Mounting category: III;

1. General

T I I 4

JLC1-1210

JLC1-1810

2. Type Designation

JLC1-6511

JLC1-9511

JL C 1 - 🗆 🗆 🗆

• Application: Remote making & breaking circuits; protect circuit from over-load when assembling with thermal over-load relay; frequent start-up and control of AC contactor; • Electric ratings: AC50/60Hz,690v,up to 95A;

• Ambient temperature: -5°C~+40°C;

• Mounting conditions: Inclination between the mounting planeand the verticall plane should not

• Standard: IEG/EN 60947-4=IEC/EN 60947-5-1. • Gontrol Goil valtage(AC Goil Operation).

Volt	ts(VAC)	24	36	42	48	110	127	220	230	240	380	415	440	480	500	600
	50Hz	B5	C5	D5	E5	F5	G5	M5	Ρ5	U5	Q5	N5	R5	-	S 5	Y5
Code	60Hz	B6	-	D6	E6	F6	G6	M6	-	U6	Q6	-	R6	Т6	-	-
	50/60Hz	Β7	-	D7	E7	F7		M7	Ρ7	-	Q7	N7	R7	-	-	-
Control	Coil Voltag	ge(DC	Coil (Opera	ition)											
Volts((VDC) 12				24		30	6		48		1	10		220)
Со	de	JD			BD		CI	C		ED		F	D		MD	

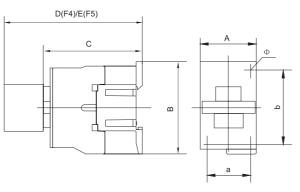
	Z:DC operation Blank:AC operation
	 Number af contacts 10:3N/O main contacts+ 1N/O auxiliary
	contact(9A,12A,18A,25A,32A) 01: 3N/O main contacts+1N/C auxiliary
	contact (9A,12A,18A,25A,32A) 11 : 3N/O main contacts+1N/O and 1 N/C auxilliary
	contact (40A,50A,65A,80A,95A) 04:4N/O main cantacts
	(9A,12A.25A,40A,50A,65A,80A,95A) 08: 2N/0 and 2N/C main contacts
l	(9A,12A,25A,40A,50A,65A,80A,95A)
	Basic specification, expresspd with the rated operational current (380V/400V,AC3)
	Design sequence No.
	Contactor Company code

3. Technical Data

Main parameter and technical characteristic (Table 1 Table 2)

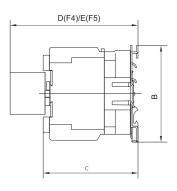
Table 1

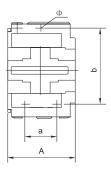
Standard	IEC/EN60947-4-1	IEC/EN60947-	ō-1			
Model No.		JLC1-09	JLC1-12	JLC1-18	JLC1-25	JLC1-32
Rated Conventional Heating Current	lth(A)	20	25	32	40	50
Rated voltage Ui(v)	ui(V)	690	690	690	690	690
Dated Operation Currentue - 200 / 41 EV	AC-3 le(A)	9	12	18	25	32
Rated Operation Currentue=380/415V	AC-4 le(A)	3.5	5	7.7	8.5	12
	220/240V KW	2.2	3	4	5.5	7.5
Power Controlled 3ph cage Motor AC-3	380/415V KW	4	5.5	7.5	11	15
	660/690V KW	5.5	7.5	10	15	18.5
Flastrial life(v10 ³ approximations)	AC-3	1000	1000	1000	1000	800
Electrial life(x10 ³ operations)	AC-4	200	200	200	200	200
Mechanical life(x10 ⁶ operations)		10	10	10	10	8
Mataland Free	Size	RT16-00	RT16-00	RT16-00	RT16-00	RT16-00
Matched Fuse	А	20	25	32	40	50
Main circuit			3P or	4P		
Auxiliary circuit at.: AC-15, Ue=415, Vle=0.95, Alth=10A			1NO or	1NC		


Standard	IEC/EN60947-4-1	EC/EN60947-	5-1			
Model No.		JLC1-40	JLC1-50	JLC1-65	JLC1-80	JLC1-95
Rated Conventional Heating Current	lth(A)	60	80	80	110	125
Rated voltage Ui(V)	ui(V)	690	690	690	690	690
Dated One wation Ourward us - 200 / 44 EV	AC-3 le(A)	40	50	85	80	95
Rated Operation Currentue=380/415V	AC-4 le(A)	18.5	24	28	37	44
	220/240V Kw	11	15	18.5	22	25
Power Controlled 3ph cage Motor AC-3	380/415V Kw	18.5	22	30	37	45
	660/690v KW	30	33	37	45	45
Γ	AC-3	800	600	600	300	600
Electrial life(x10 ³ operations)	AC-4	150	150	150	100	100
Mechanical life(x10 ⁶ operations)		8	8	8	6	6
Mataka d Fus	Size	RT16-00	RT16-00	RT16-00	RT16-00	RT16-00
Matched Fuse	A	60	70	80	110	125
Main circuit			3P or 4	4P		
Auxiliary circuit at.: AC-15, Ue=415, Vle=0.95, Alth=10A	-		1NO or	1NC		

4. Technical Lnformation

4.1 Terminal connection


		2 Cabling cros	s Section(cu)		Screw	Tightening
Midel	Numbet of piece	Flexible cable with cold- prossed socKet(mm ²)	Flexible cable without cold- pressed socket(mm ²)	Inflekible cable(mm ²)	size	torque(N. m)
JLC1-09	1-2	2.5	4	4	M3.5	0.8
JLC1-12	1-2	2.5	4	4	M3.5	0.8
JLC1-18	1-2	4	6	6	M3.5	0.8
JLC1-25	1	4	10	6	M4	1.2
JLC1-25	2	4	6	6	M4	1.2
JLC1-32	1	4	10	6	M4	1.2
JLC1-32	2	4	6	6	M4	1.2
JLC1-40	1	10	16	10	M4	3.5
JLCI-40	2	10	10	10	M8	3.5
JLC1-50	1	16	25	25	M8	3.5
JLCT-20	2	16	16	-	M8	3.5
	1	16	25	25	M8	3.5
JLC1-65	2	16	16	-	M8	3.5
11 01 00	1	50	50	50	M8	3.5
JLC1-80	2	25	35		M10	4.0
JLC1-95	1	50	20	50	M10	4.0
101-90	2	25	35	-	M10	4.0


5. Overall And Mounting Dimensions (mm)

JLC1-09~32

Model	A max	B max	C max	D max	E max	а	b	Φ	L	Р	S
JLC1-09(Z)~12(z)	47	76	82(116)	120.5(154.5)	140.5(174.5)	34/35	50/60	4.5	60(95)	10.5	8.6
JLC1-18(Z)	47	76	87(122)	125.5(160.5)	145.5(180.5)	34/35	50/60	4.5	61(96)	11.3	10.4
JLC1-25(Z)	57	86	95(131)	133.5(169.5)	153.5(189.5)	40	48	4.5	70(107)	13.2	11.7
JLC1-32(Z)	57	86	100(138)	138.5(176.5)	158.5(196.5)	40	48	4.5	71.6(120)	14.5	13
JLC1-4011(Z)~6511(z)	77	129	116(173)	154.5(211.5)	174.5(231.5)	40	100/110	6.5	78(135)	20	8.6
JLC1-4004/4008(Z)~6504/6508(Z)	84	129	116(173)	154.5(211.5)	174.5(231.5)	40	100/110	6.5	78(135)	20	8.6
JLC1-8011(Z)~9511(Z)	87	129	127(188)	165.5(226.5)	185.5(246.5)	40	100/110	6.5	83(140)	23.5	12
JLC1-8004/8008(Z)~9504/9508(Z)	96	129	127(183)	160.5(221.5)	180.5(241.5)	40	100/110	6.5	83(140)	23.5	12

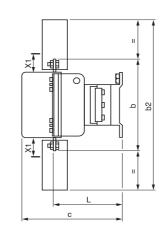
JLC1-40~95

JLC1-F115

JLC1-F150

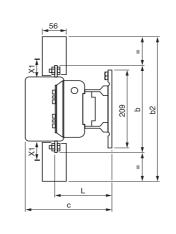
JLC1-F630

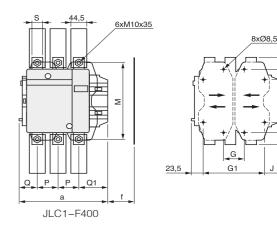
JLC1-F780

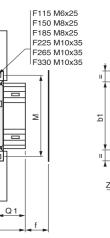

JLC1-F AC Contactor 1. Application Range

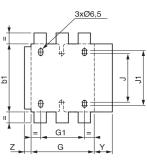

JLC1-F AC contactor is suitable for using in the circuits u to the rated voltage 380V AC 50/60Hz, current 800A, for long distance breaking circuit and frequently starting or controlling the motor. It also can be used for the control of distribution circuits of rated current from 115A to 800A. It conforms to IEC60947-4-1.

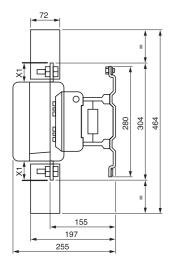
2. Specification

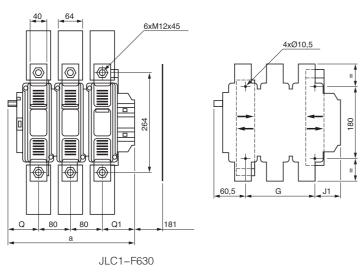

Туре	AC-3(A) Rated operational	Ma	ax pow		ings of egory A	•	se mote /)	ors in	Operating frequency (time/	Electrical life	Mecha- nical life
	current in AC-3(A)	220V 230V	380V 400V	415V	440V	500V	660V 690V	1000V	hour) AC-3	AC-3 x104	x10 ⁴
JLC1-F115	115	30	55	59	59	75	80	65	1200	120	1000
JLC1-F1154	115	30	55	59	59	75	80	65	1200	120	1000
JLC1-F150	150	40	75	80	80	90	100	65	1200	120	1000
JLC1-F1504	150	40	75	80	80	90	100	65	1200	120	1000
JLC1-F185	185	55	90	100	100	110	110	100	600	100	600
JLC1-F1854	185	55	90	100	100	110	110	100	600	100	600
JLC1-F225	225	63	110	110	110	130	129	100	600	100	600
JLC1-F2254	225	63	110	110	110	130	129	100	600	100	600
JLC1-F265	265	75	132	140	140	160	160	147	600	80	600
JLC1-F2654	265	75	132	140	140	160	160	147	600	80	600
JLC1-F330	330	100	160	180	200	200	220	160	600	80	600
JLC1-F3304	330	100	160	180	200	200	220	160	600	80	600
JLC1-F400	400	110	200	220	250	257	280	185	600	80	600
JLC1-F4004	400	110	200	220	250	257	280	185	600	80	600
JLC1-F500	500	147	250	280	295	355	330	315	600	80	600
JLC1-F5004	500	147	250	280	295	355	335	335	600	80	600
JLC1-F630	630	200	335	375	400	400	450	450	600	80	600
JLC1-F6304	630	200	335	375	400	400	450	450	600	80	600
JLC1-F780	780	220	400	425	425	450	470	450	600	80	600
JLC1-F7804	780	220	400	425	425	450	475	450	600	80	600
JLC1-F800	800	250	415	450	450	450	470	450	600	80	600

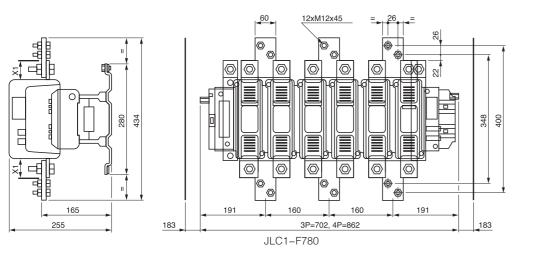

3. Outline And Mounting Dimension




JLC	:1-	а	b	b1	b2	С	f	G	G1	J	J1	L	Μ	Ρ	Q	Q1	S	1	Υ	Z
F115	ЗP	163.5	162	137	265	171	131	106	80	106	120	107	147	37	29.5	60	20	26	44	13.5
LTTD	4P	200.5	162	137	265	171	131	143	80	106	120	107	147	37	29.5	60	20	26	44	13.5
F150	ЗP	163.5	170	137	301	171	131	106	80	106	120	107	150	40	26	57.5	20	34	44	13.5
LT20	4P	200.5	170	137	301	171	131	143	80	106	120	107	150	40	26	57.5	20	34	44	13.5
F185	ЗP	168.5	174	137	305	181	130	111	80	106	120	113.5	154	40	29	59.5	20	34	44	13.5
LTOD	4P	200.5	174	137	305	181	130	151	80	106	120	113.5	154	40	29	59.5	20	34	44	13.5
F225	ЗP	168.5	197	137	364	181	130	111	80	106	120	113.5	172	48	21	51.5	25	44.5	44	13.5
F220	4P	208.5	197	137	364	181	130	151	80	106	120	113.5	172	48	17	47.5	25	44.5	44	13.5
F265	ЗP	201.5	203	145	375	213	147	142	96	106	120	141	178	48	39	66.5	25	44.5	38	21.5
F200	4P	244.5	203	145	375	213	147	190	96	106	120	141	178	48	34	66.5	25	44.5	38	21.5
F330	ЗP	213	206	145	375	213	147	154.5	96	106	120	145	181	48	43	74	25	44.5	38	20.5
F330	4P	261	206	145	375	213	147	202.5	96	106	120	145	181	48	43	74	25	44.5	38	20.5
						f	= mini	mum dis	stance	requir	ed for	coil ren	oval							




	JLC1-	а	b	b2	с	f	G*	G min.	G max.	G1 *	G1 min.	G1 max.	J	L	М	Ρ	Q	Q1	S
	2P	213	206	375	219	119	80	66	102	170	156	192	19.5	145	181	48	69	96	25
F40	0 3P	213	206	375	219	119	80	66	102	170	156	192	19.5	145	181	48	43	74	25
	4P	261	206	375	219	119	80	66	150	170	156	240	67.5	145	181	48	43	74	25
	2P	233	238	400	232	141	80	66	120	170	156	210	39.5	146	208	55	76	102	30
F50	0 3P	233	238	400	232	141	80	66	120	170	156	210	39.5	146	208	55	46	77	30
	4P	288	238	400	232	141	140	66	175	230	156	265	34.5	146	208	55	46	77	30



3. Outline And Mounting Dimension

JLC1-F		а	G	G min.	G max.	J1	Q	Q1
F630	2P	309	180	100	195	68.5	102	127
F630,F800	3P	309	180	100	195	68.5	60	89
F630	4P	389	240	150	275	68.5	60	89

JLC1-F Bobbin of AC Contactor JLC1-F

_	
Туре	Used for contactor
LX1-FF	JLC1-F115~F150
LX1-FG	JLC1-F185~F225
LX1-FH	JLC1-F265~F330
LX1-FJ	JLC1-F400
LX1-FK	JLC1-F500
LX1-FL	JLC1-F630
LX1-FK(1)	JLC1-F780

	Sepecification	Model	Contact Number	Contactor Matcheo		
		F4-40	4N0	_		
	Auxiliary Contact	F4-31	3NO+1NC	_		
	4-pole Front mount	F4-22	2N0+2NC	_		
	_	F4-13	1N0+3NC	_		
		F4-04	4NC	JLC1-09~95		
	_	F4-20	2N0	JLC1-115~800		
F4-11	Auxiliary Contact 2-pole Front mount	F4-11	1NO+1NC	_		
		F4-02	2NC			
		F8-20	2N0	_		
a Videou	Auxiliary Contact 2-pole Side mount	F8-11	1NO+1NC	JLC1-09~95		
		F8-02	2NC	-		
		F5-T0	0.1~3s			
	Pneumatic timer	F5-T2	0.1~30s	-		
	ON-delay	F5-T4	10~180s	- JLC1-09~95		
	1NO+1NC	F5-D0	0.1~3s	JLC1-115~800		
	Pneumatic timer	F5-D2	0.1~30s	-		
	OFF-delay	F5-D4	10~180s	-		
and and and and		F4-DN40	4N0			
	Auvilian Contact	F4-DN31	3N0+1NC	-		
	Auxiliary Contact —	F4-DN22	2N0+2NC	-		
	4-pole Front mount	F4-DN13	1NO+3NC	_		
		F4-DN04	4NC	- JLC1-DN09~DN95		
	_	F4-DN20	2N0			
	Auxiliary Contact 2-pole Front mount	F4-DN11	1NO+1NC	_		
		F4-DN02	2NC	-		
		JLX1-D2	AC Volts	JLC1-09~18		
	Contactor Coil	JLX1-D4	AC Volts	JLC1-25~32		
	_	JLX1-D6	AC Volts	JLC1-40~95		
		JLX1-6N	AC Volts	JLC1-40~95		
	_	JLX1-FF	AC Volts	JLC1-115~150		
		JLX1-FG	AC Volts	JLC1-185~225		
	Contactor Coil	JLX1-FH	AC Volts	JLC1-265		
	Water Proof —	JLX1-FJ	AC Volts	JLC1-400		
	_	JLX1-FK	AC Volts			
	_	JLX1-FL	AC Volts			
	_					
		JLX1-FX	AC Volts	JLC1-780		

JLC2-09N

JLC2--32N

JLC2--80N

JLC2 Mechanical interlock contactor

1. Application

JLC2-D of mechanical chain contacts (hereinafter referred to as mechanical chain contacts) is in the JLC2-D series AC contactor, based on the installation of machinery assembled chain body. It applies to AC 50 or 60Hz, rated voltage up to 660V and below, rated current up to 95A and the following circuit, for long-distance direct control of three-phase squirrel-cage motor starting, stopping and reversing operation. It has a mechanical chain, can ensure the safe operation of two reverse contacts to prevent short circuit accidents. With JRS1 series thermal relay contacts, which can be made for motor overload protection.

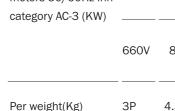
This series of touch products meet IEC60947-4-1, GB14048.4 standards. 2. Feature

Ambient air temperature of -5° C ~ 40° C, and the 24h average does not exceed 35° C. Altitude: Altitude less than 2000m.

Atmospheric conditions: 40°C, relative humidity of the atmosphere does not exceed 50%; At a lower temperature allows a higher relative humidity, the wettest month of the monthly minimum temperature level does not exceed 25°C, the monthly mean maximum relative humidity of not more than 90%, due to temperature changes in the product of condensation occurring on the measures must be taken.

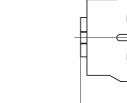
Pollution degree: 3;

Installation Category: III class;


Installation conditions: The mounting surface and the vertical gradient is not greater than \pm 5 $^{\circ}$. Impulsive vibration: Product should be installed and used in the absence of a significant shake and shock, vibrations JLC2-D AC Contactor.

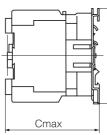
Tura	Rated current		Cont	trolled power (I	KW)	
Туре	AC-3(A)	220V	380V	415V	440V	660V
JLC2-09N	9	2.2	4	4	4	5.5
JLC2-12N	12	5.5	5.5	5.5	5.5	7.5
JLC2-18N	18	7.5	7.5	9	9	10
JLC2-25N	25	5.5	11	11	11	15
JLC2-32N	32	7.5	15	15	15	18.5
JLC2-40N	40	18.5	18.5	22	22	30
JLC2-50N	50	15	22	25	30	33
JLC2-65N	63	18.5	30	37	37	37
JLC2-80N	80	22	37	45	45	45
JLC2-95N	95	22	45	45	45	41
JLC2-115N	115	30	55	59	59	80
JLC2-150N	150	40	75	80	80	100
JLC2-170N	170	55	90	100	100	110
JLC2-205N	205	63	110	110	110	129
JLC2-245N	145	75	132	132	132	160
JLC2-300N	300	100	160	200	200	220
JLC2-410N	410	110	220	250	250	280
JLC2-475N	475	147	265	280	280	355
JLC2-620N	620	200	335	400	400	450

JL Туре Parameter 11 Item Rated 380V AC-3 1 working current (A) 220V

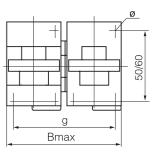

380V

JLC2-F115N

3. Outline And Mounting Dimension


FIGURE 1 JLC2-09N~32N(Horizontal installation)

Cmax


FIGURE 2 JLC2-40N~95N(Horizontal installation)

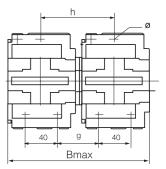

Contactors Series

								Table 2
JLC2-								
115N	150N	170N	205N	245N	300N	410N	475N	620N
115	150	170	205	245	300	410	475	620
30	40	55	63	75	100	110	147	200
55	75	85	90	110	160	200	250	335
80	90	100	110	129	220	280	330	450
4.32	4.32	4.32	9.9	10.2	18.4	18.7	24	38.8

JLC2-09N~170N(Horizontal installation)

Туре	Amax	Bmax	Cmax	g	h	Ø
JLC2-09N~12N	81	106	85	95	-	4.5
JLC2-18N	81	106	87	95	-	4.5
JLC2-25N	94	129	100	112	-	4.5
JLC2-32N	96	129	103	112	-	4.5
JLC2-40N~65N	129	165	116	50	90	6.5
JLC2-80N~95N	129	185	127	57	96	6.5
JLC2-115N~170N	162	268	133	242/256	-	6.5

JLC2-F115N~F330N,JLC2-205N~300N(Horizontal installation)

Table 5(Unit:mm)

Table 4(Unit:mm)

Tura		Р	D 4	01	6		4	la la	L 4				0			~1	V	Х	1
Туре	а	Р	P1	Q1	S	Ø	f	b	b1	М	С	L	G	J	Н	ø1	Y	≤500V	>500V
JLC2-F115	346	37	78	60	15	M6	109	162	137	147	171	107	80	72	120/106	6.5	57	10	15
JLC2-F1154	420	37	78	60	15	M6	109	162	137	147	171	107	80	109	120/106	6.5	75.5	10	15
JLC2-F150	346	40	72	57.5	20	M8	109	170	137	150	171	107	80	72	120/106	6.5	57	10	15
JLC2-F1504	420	40	72	55.5	20	M8	109	170	137	150	171	107	80	109	120/106	6.5	75.5	10	15
JLC2-F185, 205	357	40	78	59.5	20	M8	117	174	137	154	181	113.5	80	78	120/106	6.5	59.5	10	15
JLC2-F1854	437	40	78	59.5	20	M8	117	174	137	154	181	113.5	80	118	120/106	6.5	79.5	10	15
JLC2-F225,245	357	48	62	51.5	25	M10	117	197	137	175	181	113.5	80	78	120/106	6.5	59.5	10	15
JLC2-F2254	437	48	54	47.5	25	M10	117	197	137	175	181	113.5	80	118	120/106	6.5	79.5	10	15
JLC2-F265	424	48	99	66.5	25	M10	143	203	145	178	213	141	96	109	120/106	6.5	61.5	10	15
JLC2-F2654	520	48	99	66.5	25	M10	143	203	145	178	213	141	96	157	120/106	6.5	85.5	10	15
JLC2-F330,400	445	48	105	74	25	M10	143	206	145	181	219	145	96	122	120/106	6.5	65.5	10	15
JLC2-F3304	541	48	105	74	25	M10	143	206	145	181	219	145	96	170	120/106	6.5	89.5	10	15

JLC2-F400N~F500N, JLC2-410N~475N(Horizontal installation)

Table 6(Unit:mm)

Tura		D	D1	01	c	~	£	h	h1	N/			0	01		Н	~1	V	Х	1
Туре	а	Р	PI	ŲΤ	5	Ø	1	b	DT	IVI	С	L	G	GI	J	п	ØT	ř	≤500V	>500V
JLC2-F400,410	445	48	105	74	25	M10	151	206	209	181	219	145	80	170	156	170/180	8.5	19.5	15	20
JLC2-F4004	541	48	105	74	25	M10	151	206	209	181	219	145	80	170	156	170/180	8.5	67.5	15	20
JLC2-F500,475	485	55	111	77	30	M10	169	238	209	208	232	146	80	170	156	170/180	8.5	39.5	15	20
JLC2-F5004	595	55	111	77	30	M10	169	238	209	208	232	146	140	230	156	170/180	8.5	34.5	15	20

JLC2-F630N~F800N,JLC2-620N(Horizontal installation)

Table 7	(Unit:mm)
---------	-----------

Tupo	0	Р	D1	01	c	a	£	h	h1	N.4	0		G		н	ø1	V	Х	1
Туре	a	Р	PI	ŲΤ	3	Ø	1	D	DT	IVI	C	L	G	J	п	ØI	T	≤500V	>500V
JLC2-F630,620	636	80	138	89	40	M12	201	304	280	264	255	155	180(100/195)	139	180/190	10.5	68.5	20	30
JLC2-F6304	796	80	138	89	40	M12	201	304	280	264	255	155	240(150/275)	139	180/190	10.5	68.5	20	30
JLC2-F800	636	80	138	89	40	M12	201	304	280	264	255	155	180(100/195)	139	180/190	10.5	68.5	20	30

JLC2-F115N~F330N(Vertical installation)

Madaltura	0	Р	P1	01	S	a	f	b	P1	М	с	L	G	Н	1	ø1	Y	Х	(1
Model type	а	Р	PI	ŲΤ	3	Ø	1	U	PI	IVI	C	L	G	п	J	ØΤ	T	≤500V	>500V
JLC2-F115	184	37	60	50	15	M6	109	357-472	48-163	147	171	107	80	120	80-195	6.5	57	10	15
JLC2-F1154	221	37	60	50	15	M6	109	357-472	48-163	147	171	107	80	120	80-195	6.5	75.5	10	15
JLC2-F150	184	40	57	47	20	M8	109	365-480	45-160	150	171	107	80	120	80-195	6.5	57	10	15
JLC2-F1504	221	40	55.5	45.5	20	M8	109	365-480	45-160	150	171	107	80	120	80-195	6.5	75.5	10	15
JLC2-F185	192	40	59.5	52.5	20	M8	117	389-484	61-156	154	181	113.5	80	120	100-195	6.5	59.5	10	15
JLC2-F1854	232	40	59.5	52.5	20	M8	117	389-484	41-156	154	181	13.5	80	120	100-195	6.5	79.5	10	15
JLC2-F225	192	48	51.5	44.5	25	M10	117	412-507	43-138	172	181	113.5	80	120	100-195	6.5	59.5	10	15
JLC2-F2254	232	48	47.5	40.5	25	M10	117	412-507	43-138	172	181	113.5	80	120	100-195	6.5	79.5	10	15
JLC2-F265	226	48	66.5	63.5	25	M10	143	448-583	47-202	178	213	141	96	120	130-265	6.5	61.5	10	15
JLC2-F2654	274	48	66.5	63.5	25	M10	143	448-583	47-202	178	213	141	96	120	130-265	6.5	85.5	10	15
JLC2-F330	240	48	74	70	25	M10	143	481-586	94-199	181	219	145	96	120	160-265	6.5	65.5	10	15
JLC2-F3304	288	48	74	70	25	M10	143	481-586	94-199	181	219	145	96	120	160-265	6.5	89.5	10	15

JLC2-F400N~F500N(Vertical installation)

Model type		D	01	0	6	~	£	h	D1				0	01			~ 1	7	V	X	1
woder type	а	٢	QΤ	Q	5	Ø	1	a	PI	IVI	С	L	G	GI	н	J	ØT	Ζ	Ŷ	≤500V	>500V
JLC2-F400	240	48	74	70	25	M10	151	481-586	94-199	181	219	145	80	170	180	100/205	8.5	50.5	19.5	15	20
JLC2-F4004	288	48	74	70	25	M10	151	481-586	94-199	181	219	145	80	170	180	100/205	8.5	50.5	67.5	15	20
JLC2-F500	261	55	77	74	30	M10	169	533-618	87-172	208	232	146	80	170	180	120/205	8.5	51.5	39.5	15	20
JLC2-F5004	316	55	77	74	30	M10	169	533-618	87-172	208	232	146	140	230	180	120/205	8.5	51.5	34.5	15	20

JLC2-F630N~F800N(Vertical installation)

Model type		Р	01	0	c	ñ	£	h	D1	М	с		C	н		ø1	7	V	Х	1
woder type	a	Р	ŲΙ	Q	3	Ø	1	d	PI	IVI	C	L	G	п	J	ØI	2	r	≤500V	>500V
JLC2-F630	309	80	89	60	40	M12	201	669-684	101-116	264	255	155	180(100-195)	190	180-195	10.5	60.5	68.5	20	30
JLC2-F6304	389	80	89	60	40	M12	201	669-684	106-116	264	255	155	240(150-275)	190	180-195	10.5	60.5	88.5	20	30
JLC2-F800	309	80	89	60	40	M12	201	669-684	106-116	264	255	155	180(100-195)	190	180-195	10.5	60.5	68.5	20	30

JLC2-F780N(Vertical installation)

Madaltura	0	D	01	0	c	â	£	h	D1	М	ц	0	L	C	01	Ц	~1	7	V	Х	1
Model type	d	٢	ŲΙ	Q	3	Ø	1	U	PI	IVI	п	C	L	G	GT	п	ØI	2	T		>500V
JLC2-F780	704	160	192	192	60	M12	201	435	81-101	400-438	202	225	165	240		180	10.5	91	133	20	30
JLC2-F7804	864	160	192	192	60	M12	201	435	81-101	400-438	202	225	165	240	190	180	10.5	91	103	20	30

4. Ordering Instructions

When placing an order, you should point out the below:

1. Product name and model, rated operational voltage and frequency of coil, order quantity. Ordering example: Reversing Contactor JLC2-40N AC 220V 50Hz 60PCS.

Table 8(Unit:mm)

Table 9(Unit:mm)

Table 10(Unit:mm)

Table 11(Unit:mm)

JLC1-K AC contactor

proper thermal relay, can act to protect the circuit bound to overload.

2. Main Parameter And Technical Characteristic

1. Application Range

It conforms to IEC60947-4-1.

JLC1-K12

JLC2-K09

F4-K11

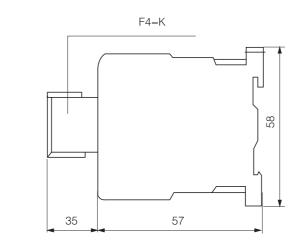
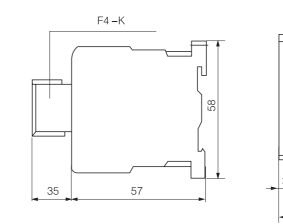
Parameter		Туре	00	00	10
Item			06	09	12
Dating working ourrant()()	380V	AC-3	6	9	12
Rating working current(V)	3600	AC-4	2.6	3.5	5
Rating working voltage(V)			690	690	690
Appointed heating current(A)			16	20	20
Three phases cage motors	220V		1.5	2.2	3
power which can be pulled	380V		2.2	4	5.5
AC3(KW)	660V		3	5.5	7.5
	Electrical lfie	AC-3	1200	1200	1200
Operation frequency	(×10 ⁴)	AC-4	300	300	300
(time/hour)		hanical life (×10 ⁴)	3600	3600	3600
		AC-3	50	50	50
Electrical Ifie		AC-4	10	10	10
Mechanical life			1000	1000	1000
		Combination		1-K02,F4-K: 3,F4-K40,F	
Auxiliary contact block		Conventionnal heating current	6A	6A	6A
		Control capacity	AC-15 3	360VA;DC-1	.3 33W
Matching fusing model			RT16-16	RT16-16	RT16-16
Average power consumption	50Hz	Pick-up	30	30	30
(VA) 20°C	JUNZ	Holding	4.5	4.5	4.5
Number of piece			1	1	1
Cable(mm ²)			2.5	2.5	2.5
Screw size			МЗ	МЗ	M3
Tightening torque (N. M)			0.5	0.5	0.5
		JLC1-K	0.18	0.18	0.18
Unit weight (kg)		JLC1-KN	0.36	0.36	0.36
		JLC1-KZ	0.18	0.18	0.18

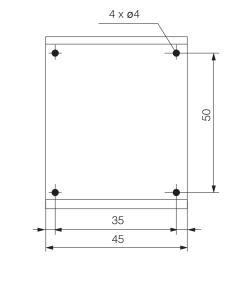
JLC1-K series AC contactor is suitable for use in the circuit up to the rate and frequent starting,

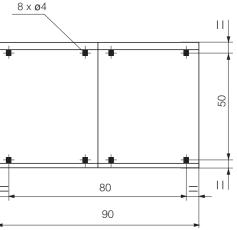
controlling the AC motor. The addition of auxiliary contact group to the contactor, combined with the

3. Outline And Mounting Dimension

FIGURE 1 JLC1-K06~K12


FIGURE 2 JLC2-K06~12



4. Ordering Instructions

When placing an order ,you should point out the below:

1. Product name and model, rated operational voltage and frequency of coil, order quantity. Ordering example: JLC1-K0910 AC 220V 50Hz 10PCS

LP1-D09BD

LP1-D18BD

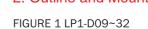
LP1-D25BD

LP1-D32BD

Application

LP1 new type DC contactor is suit to 24V/DC,36V/DC ,48V/DC voltage Rated current from 9A to 95A for control electric motor and machine tools, it is complied with standard IEC60947.

product type	DC contactor
Product model number	LP1
Application field	Applied to non inductive or micro inductive load, resistance fumace in AC load with power factor
class of use	AC-1 AC-3
	AC-4
number of pole	
Power pole contact composition	3NO
rated working curent	25A 60 °C inUpper<=440V AC AC-1 Applies to the power loop 9A60 °C inUpper<=440V AC AC-3 Applies to the power loop
Auxiliary contact point type	24VDC
Auxiliary contact point type	1N0+1NC
Rated working voltage	power supply loop:<=690V AC 25400 Hz power supply loop:<=225V DC
	5.5kW inUpper 500V AC 50/60Hz (AC-3)
	2.2kW inUpper 220/240V AC 50/60Hz (AC-3)
Electric motor power	4kW inUpper 380/400V AC 50/60Hz (AC-3)
	4kW inUpper 415/440V AC 50/60Hz (AC-3) 5.5kW inUpper 660/690V AC 50/60Hz (AC-3)
	2.2kW inUpper 660/690V AC 50/60Hz (AC-3)
	0.6 Mcycles 25A AC-1Ue<=440V
Electric life	2 Mcvcles 9A AC-3Ue<=440V
	2 Mcycles 5.6A AC-3Ue660/690V
mechanical life	30 Mcycles
Max operation frequency	3600 times/hour inAbove<60°C
	55ms closure
Action time	20ms break
Control voltage limit	Release:0.10.25Uc 60°C Run:0.71.25Uc 60°C
Agreed booting oursest (ith)	25A in the upper<60 °C is suitable for power supply loop
Agred heating current (ith)	10A Above<60°C for signal loop
Average impedance	2.5mQ-lth25A50Hz Applicable power loop
Rated insulation voltage (Ui)	Power supply circuit: 690V in accordance with IEC 60947-4-1 Signal loop: 690V in accordance with IEC 60947-1
Surge suppression module	build-in bidirectional peak current limiting diode
Auxiliany contact point type	Type Mechanical connection 1 NO+ 1 NC in accordance with IEC 60947 5-1 The type is mirrored to the main contact status.1 NC complies with IEC 60947-4-1
Frequency of singal loop	25400Hz
Mini on/off current	suit to singal loop
Mini on/off voltage	suit to singal loop
No overlap time	1.5 ms loss of power between NC and NO contact 1.5 ms is generated between NC and NO contact
insulation resistance	>10MQ apply signal loop suit to singal lop
installation method	Din rail installation Baseplate installation
Control loop characteristics	DC standard
Rated shock tolerance voltage (Uimp)	6KV is complied with IEC60947
Safety cover	
Safety class	B10d=1369863 times, contactors with nominal loads comply with EN/ IS013849-1 B10d=20000000 times, contactors for nominal loads comply with EN/ IS013849-1
time constant	28 ms
	5.4W 20°C
Surge power(W)	



1. Application range

LP1-D series DC operated AC contactor (hereinafter to be referred as contactor), it mainly applies to the circuit of AC 50Hz/60Hz , and rated insulation voltage 690V . When used in AC-3, and rated operational voltage 380V , rated current up to 95A , for long distance breaking circuit block , timedelay block , thermal overload relay devices etc. This product conforms to GB14048.4,IEC60947-4-1. standard.

LP1-D1210

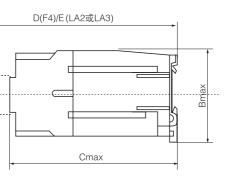
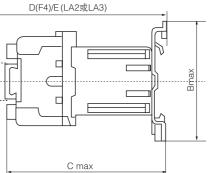
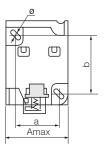
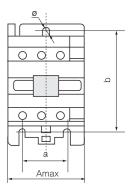



FIGURE 2 LP1-D40~95

LP1-D4011





LP1-D8011

2. Outline and Mounting Dimension

Product Model	Amax	Bmax	Cmax	Dmax	Emax	а	b	Ø
LP1-D-09~12	47	76	116	149	160	45	50/60	4.5
LP1-D-18	47	76	120	157	177	45	50/60	4.5
LP1-D-25	57	86	130	163	184	40	50/60	4.5
LP1-D-32	57	86	135	168	189	40	50/60	4.5
LP1-D-4011~6511	77	129	175	203	223	40	100/110	6.5
LP1-D-40004~65004	85	129	174	203	223	40	100/110	6.5
LP1-D-40008~65008	85	129	185	203	223	40	100/110	6.5
LP1-D-8011~9511	87	129	183	212	230	40	100/110	6.5
LP1-D-80004~95004	97	129	180	212	230	40	100/110	6.5
LP1-D-80008~95008	97	129	191	212	230	40	100/110	6.5

Note : Not only use screw mounting, but also can use 35mm [CJX2-09Z~95Z] and 75mm [CJX2-40Z~95Z] ____ international standard Din-rail mounting.

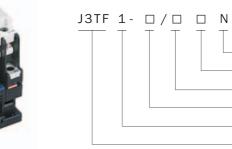
3. Main Parameter And Technical Characteristic

3.1 Rated controllable voltage of DC coil (Table 1)

Coil voltage (V)	12	24	36	48	60	72	110	125	220	250	440
Coil code	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD

3.2 Main parameter and technical characteristic (Table 2)

												Table 2
Para	ameter	Туре	LP1-D-	LP1-D-	LP1-D-	LP1-D-	LP1-D-	LP1-D-	LP1-D-	LP1-D-	LP1-D-	LP1-D-
Item			09	-12	18	25	32	40	50	65	80	95
Dotod	380V	AC-3	9	12	18	25	32	40	50	65	80	95
Rated	3000	AC-4	3.5	5	7.7	8.5	12	18.5	24	28	37	44
operational current (A)	660V	AC-3	7	9	12	18	21	34	39	42	49	49
current (A)	0000	AC-4	1.5	2	3.8	4.4	7.5	9	12	14	17.3	21.3
Conventiona	al heating curre	ent (A)	20	20	32	40	50	60	80	80	110	110
Rated insula	ation voltage (V	')	690	690	690	690	690	690	690	690	690	690
Power of co	ntrollable	220V	2.2	3	4	5.5	7.5	11	15	18.5	22	25
3-phase squ	uirrel-cage	380V	4	5.5	7.5	11	15	18.5	22	30	37	45
motor (kW)	AC-3	660V	5.5	7.5	10	15	18.5	30	33	37	45	55
Operational	Electric life	AC-3	1200	1200	1200	1200	600	600	600	600	600	600
frequency	(×10 ⁴)	AC-4	300	300	300	150	150	150	150	150	150	150
(operation/h)	Mechanical lif	fe(×10 ⁴)	3600	3600	3600	3600	3600	3600	3600	3600	2400	2400
Electric life	(anaration (b)	AC-3	100	100	100	100	80	80	60	60	60	60
Electric life	(operation/h)	AC-4	20	20	20	20	20	15	15	15	10	10
Mechanical	life (operation,	/h)	1000	1000	1000	1000	800	800	800	800	600	600
Screw size			M3.5	M3.5	M3.5	M4	M4	M8	M8	M8	M10	M10
Tightening torque (N·m)		0.8	0.8	0.8	1.2	1.2	3.5	3.5	3.5	4	4	
DC coil pow	DC coil power (W)		9	9	11	11	11	20	20	20	20	20
Operating ra	Dperating range				up voltage	e:85%~1	10% Us ;	Drop-ou	it voltage	: 10%~70)% Us	
Basic paran	neter of auxilia	ry contact				AC-2	L5: 360VA	DC-13:	33W Ith:	10A		


J3TF AC contactor

1. Application range

J3TF series slag contactor utilises dry AC 50H7 or 60Hz, rated insulation voltage is 690-1000V, rated working voltage is 0.475A when rated working voltage is 380V under AC-3 use category, and the main supply distance is It is used for connecting surge and breaking circuit, and is suitable for controlling the start, stop and reverse of AC motors. Comply with GB/T14048.4, IEC60947-4-1, VDE0660 and other standards.

J3TF30

2. Product number

J3TF31

Table O

4. Main parameters and technical performance

	Rated	Mecha-	Conve-	Electric life ×10 ⁶		life working			Co	ntrollab	r power ((kW) 50Hz		
Туре	thermal current	nical	ntional heating			current(3	880V)(A)		AC-3					C-4
	(A)	life×106	current	380V	660V	AC 3	AC 4	230 /220V	400/ 380V	500V	690/ 660V	1000V	400/ 380V	690/ 660/
J3TF40	690	15	20	1.2	0.2	9	3.3	2.4	4	5.5	5.5	-	14.8/1.4	2.54/2.4
J3TF41	690	15	20	1.2	0.2	12	4.3	3.3	5.5	7.5	7.5	-	2/1.9	3.45/3.3
J3TF42	690	15	30	1.2	0.2	16	7.7	4	7.5	9	9	-	3.5	6
J3TF43	690	15	30	1.2	0.2	22	8.5	5.5	11	11	11	-	4	6.6
J3TF44	690	10	45	1.2	0.2	32	15.6	8.5	15	21	23	-	7.5	13
J3TF45	690	10	55	1.2	0.2	38	18.5	11	18.5	25	23	-	9	15.5
J3TF46	1000	10	80	1.2	0.2	45	24	15	22	30	39	-	12.6/12	21.8/208
J3TF47	1000	10	80	1.2	0.2	63	28	18.5	30	41	55	-	14.7/14	25.4/24.3
J3TF48	1000	10	100	1.2	0.2	75	34	22	37	50	67	39	17.9/17	30.9/29.5
J3TF49	1000	10	100	1.2	0.2	85	42	26	45	59	67	39	22/21	38/36
J3TF50	1000	10	160	1.2	0.2	110	54	37	55	76	100	658	28.4/27	49/46.9
J3TF51	1000	10	160	1.2	0.2	140	68	43	75	98	100	65	36/35	63/60
J3TF52	1000	10	220	1.2	0.2	170	75	55	90	118	156	90	40/38	69/66
J3TF53	1000	10	220	1.2	0.2	205	96	64	110	145	156	90	52/50	90/86
J3TF54	1000	10	300	1.2	0.2	250	110	78	132	178	235	132	61/58	105/100
J3TF55	1000	10	300	1.2	0.2	300	125	93	160	210	235	132	69/66	119/114
J3TF56	1000	10	400	1.2	0.2	400	150	125	22	248	375	250	85/81	147/140
J3TF57	1000	10	475	1.2	0.2	475	165	148	252	342	432	250	110/104	197/190

- Mechanical interlock
- Indicates the number of normally closed auxiliary contacts
- Indicates the number of normally open auxiliary contacts
- Rated working current (AC-3, 380V)
- Design Number
- AC contactor

3. Working conditions

- ◆ The altitude does not exceed 2000 meters;
- ◆ Ambient temperature: -25°C~+55°C;
- ◆ Relative air humidity: no more than 50% at +40°C, no more than 90% at +25°C;
- Atmospheric conditions: there is no medium that can cause explosion hazard, and there is no gas or conductive dust that corrodes metal and damages insulation;
- Where there is no significant shaking and shock vibration;

2-Φ5³³

◆ In a place where there is no rain or snow.

5. Shape and installation dimensions

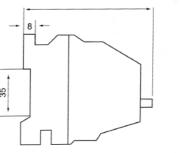
Amax

╤┯┶┷╧

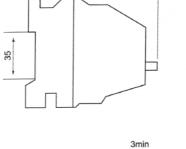
 $\pm \wedge \pm \wedge \pm$

Amax

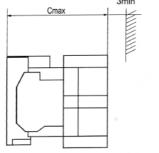
J3TF42



J3TF44


J3TF51

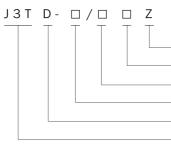
Bmax	
	-



J3TF-9~32F

Туре	A max	B max	C max	а	b	С
J3TF-40, 41	45	78.5	104(90)	35+0.31	60+0.37	
J3TF-42, 43	46	85	114	35+0.31	75+0.37	
J3TF-44, 45	74	88	08	50+0.31	75+0.37	
J3TF-46, 47	91(114)	120	124	70+0.6	100+0.2	4.8
J3TF-48, 49	102(125)	135	142	80+0.6	100+0.2	5.5
J3TF-50, 51	122(145)	156	154	100+0.2	130+0.8	6.5
J3TF-52, 53	140(1 63)	185	190	100+0.2	160+0.8	7
J3TF-54, 55	150(173)	205	200	120+0.2	180+0.8	9
J3TF-56, 57	165(1 88)	205	225	130+0.8	180+0.8	9

J3TD AC Contactor


1. Application range

rotation of AC motors.

2. Product number

J3TD-42

J3TD-44

3. Main parameters and technical performance

	Rated	Mecha-	Electric		Rated working		Cor	ntrollabl	(kW) 50	(kW) 50Hz		
Туре	insulation	nical	life×	10°	current(380V)(A)			AC	-3		AC-4	
21	voltage(V)	life×106	AC-3	AC-3	AC 3	AC 4	230 /220V	400/ 380V	500V	690/ 660V	400/ 380V	690/ 660/
J3TD-09	660	10	1.0	0.2	9	3.3	2.4	4	5.5	5.5	1.4	2.4
J3TD-12	660				12	4.3	3.3	5.5	7.5	7.5	1.9	3.3
J3TD-16	660				16	4	4	7.5	10	11	3.5	6
J3TD-22	660				22	6.1	6.1	11	11	11	4	6.6
J3TD-32	660				32	8.5	8.5	15	15	23	7.5	13

Attra	octing coi AC(50	•	consump	tion DC	Working voltage range of	Oper frequ	0	Conventional heating	Auxiliary con AC-15	tact current (A) DC-13	Auxiliary contact agreed	Auxiliary contact rated
maintain (VA)	Power Factor	Pull in (VA)	Power Factor	Pull and hold(VA)	attracting	AC-3	AC-4	current	380/220V	110/220V	hair current (A)	insulation voltage (A)
10	0.29	68	0.82	6.2	0.8~1.1	1000	250	20	6/10	0.9/0.45	10	660
10	0.29	68	0.82	6.2	0.8~1.1	1000	250	20	6/10	0.9/0.45	10	660
10	0.29	68	0.82	6.2	0.8~1.1	750	250	30	6/10	0.9/0.45	10	660
10	0.29	68	0.82	6.2	0.8~1.1	750	250	30	6/10	0.9/0.45	10	660
10	0.29	68	0.82	6.2	0.8~1.1	750	250	55	4/6	0.9/0.45	10	660

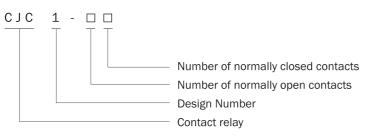
. 23. www.juhoele.com

The J3TDseries mechanical interlocking reversible contactor is AC 50Hz or 60Hz, the rated insulation voltage is 690-1000V, and the rated working current is 9A-475A when the rated working voltage is 380V under the AC-3 usage category. Mainly used to control the forward and reverse

Comply with GB/T14048.4, IEC60947-4-1, VDE0660 and other standards.

- Mechanical interlock
- Indicates the number of normally closed auxiliary contacts
- Indicates the number of normally open auxiliary contacts
- Rated working current (AC-3, 380V)
- Design Number
- AC contactor

J3TH-22


J3TH-44

J3TH AC contactor

1. Application

The J3TH contact relay is suitable for AC 50Hz, 60Hz. In the control circuit with rated voltage to 60V or DC voltage to 600V, it is used to control various electromagnetic coils to amplify the signal or transmit the signal to related control components at the same time. Its performance indicators The product equivalent to 3TH.

2. Product number

3. Outline and Mounting Dimension

Mode	el	J3TH (3TH80)	J3TH (3TH82)	J3TH (3TH40)	J3TH (3TH42)	J3TH (3TH30)
Rated insulation vo	Itage UI(V)	660	660	660	660	660
Rated working	AC-15(AC-11)	6	6	6	6	6
current le(A)	DC-13(DC-11)	0.25	0.25	0.25	0.25	0.25
Electric life(×10 ⁶)	AC-15(AC-11)	30	30	30	30	30
Operating	AC-3	1.2	1.2	1.2	1.2	1.2
frequency (times/h)	AC-15 DC-13	1000	1000	1000	1000	1000
Mechanical life(×10) ⁶)	36	36	36	36	36
Action characteristic	CS	Pull-in vol	tage: 85-110%	, release volta	age: 20~7	5% US
Action time			The coil is ener closed contac	0	,	
Conventional heatir	ng current (A)	10	10	10	10	10

Туре	Structure	Normally open contact (cover number)	Normally closed contact (cover number)
J3TH-04-0A		0	4
J3TH-13-0A	-	1	3
J3TH-22-0A	One Way	2	2
J3TH-31-0A	-	3	1
J3TH-40-0A	-	4	0
J3TH-44-0A		4	4
J3TH-53-0A	-	5	3
J3TH-62-0A	Two-way	6	2
J3TH-71-0A	-	7	1
J3TH-80-0A		8	0

JCA2 AC contactor

1. Application

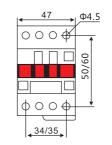
JCA2

JCA2 contactor relays are mainly used for relay control, signal transmission, isolation and amplification circuits with AC 50/60Hz, rated working voltage up to 660V and DC rated voltage up to 220V for making, breaking, and amplifying circuits.

2. Product number

JCA	2 -	

3. Outline and Mounting Dimension


model	Number of c	contact pairs
moder	Normally open	Normally closed
JCA2-40	4	0
JCA2-31	3	1
JCA2-22	2	2
JCA2-13	1	3
JCA2-04	0	4

4. Normal working conditions and installation conditions

- ◆ Altitude: no more than 2000m;

- more than ±5°;

5. Shape And Installation Dimensions (mm)

.25. www.juhoele.com

- Number of normally closed contacts
- Number of normally open contacts
- Design Number
- Contact relay

• Ambient air temperature: $-5^{\circ}C^{+40}C$, the average value within 24 hours does not exceed $+35^{\circ}C$;

Atmospheric conditions: when the highest temperature is +40°C, the relative humidity of the air does not exceed 50%; higher relative humidity is allowed at lower temperatures, such as 90% at 20°C. Special measures should be taken for the occasional condensation due to temperature changes;

◆ Pollution degree: Level 3; ◆ Installation category: Class III;

◆ Installation conditions: the inclination of the installation surface and the vertical surface is not

◆ Impact vibration: The product should be installed and used in a place where there is no significant shaking, impact and vibration.

JMC ty Magne											
		Frame size			18	BAF			22	AF	
				JMC-6a	JMC-9a	JMC-12a	JMC-18a	JMC-9b	JMC-12b	JMC-18b	JMC-22b
Туре		Screws clamp termi	nals	•	•	•	•	•	•	•	•
		Lug clamp termina		-			-	. <u> </u>		-	
Number of pole						ole				ole	
Rated operation	0					VOV				VO	
Rated insulation	ı voltage, l	Ji			69	VOV			69	VOV	
Rated frequency	/				50/	60Hz			50/6	50Hz	
Rated impulse v		e · · ·				kV				kV	
Maximum operati	ng rate in op	perating cycles per hour(A	03)			ions per hou	r		1800 operat		r
Durability		Mechanical				perations				perations	
		Electrical				perations				perations	
	AC-1	Thermal current	[A]	25	25	25	32	25	27	40	45
		200/240V	[kW]	2.2	2.5	3.5	4.5	2.5	3.5	4.5	5.5
			[A]	9	11	13	18	11	13	18	22
Current and power		380/440V	[kW]	3	4	5.5	7.5	4	5.5	7.5	11
			[A]	7	9	12	18	9	12	18	22
	AC-3	500/550V	[kW]	3	4	7.5	7.5	4	7.5	7.5	15
			[A]	6	7	12	13	7	12	13	20
		690V	[kW]	3	4	7.5	7.5	4	7.5	7.5	15
			[A]	4	5	9	9	6	9	9	18
		1000V	[kW]					-		-	-
			[A]					-		-	-
		1S	[A]	210	250	280	300	250	280	300	400
		10s	[A]	105	110	120	130	110	120	154	186
Rated Shor		30s	[A]	70	70	80	85	70	80	100	130
withstand curr		1min	[A]	61	61	61	70	61	61	84	90
60947)	10min	[A]	40	45	47	50	45	50	60	60
		30min	[A]	30	30	30	40	30	30	40	50
		≥15min	[A]	25	26	28	30	26	28	30	45
		tinuous curren	[A]	25	25	25	32	25	25	40	40
	Single	110-120V 220-	[HP]	0.5	0.5			0.5			2
	phase	240V	[HP]	1.5	1.5	2	3	1.5	2	3	3
UL rating		200-208V _	[HP]	2	2	3	7.5	2	3	7.5	7.5
(50/60Hz)	Three	220-240V	[HP]	3	3	5	7.5	3	5	7.5	10
	phase	440-480V 550-600V -	[HP]	5	5	7.5	10	5	7.5		15
			[HP]	7.5	7.5	0	15	7.5		15	20
	-	NEMA size		00	00	0	1	00	0	1	-
Size	AC	Weight	[kg]			33 5×80.4				34 5×97.4	
and and	control	Size(W×H×D)Z	[mm]			.5×80.4				.5×87.4	
weight weight	DC	Weight	[kg]			.4				41 5×102.6	
₩	control	Size(W×H×D)	[mm]			.5×96.6				5×103.6	
	Au	xiliary(standard)				or 1NC				1NC	
Auxiliary		Side mount				4-1				4-1	
Front mount					UA-2	, UA-4			UA-2,	UA-4	

Note) Minimum conduct current of Auxiliary contactor is DC 17V 5mA.

JMT type Thermal Overload Relays

			MT-12/□	MT-32/□
Туре	Screws clamp terminals		•	•
	Lug clamp terminals		-	-
Rated operation	onal voltage, Ue	[V]	690	690
Rated insulation	on voltage, Ui	[V]	690	690
Rated impulse	withstand voltage, Uimp	[kV]	6	6
Trip class			10A, 20	10A, 20
Setting range			0.1~18A	0.1~40A
Size	Weight	kg	0.1	0.17
and weight	Size(W×H×D)	[mm]	45×73.2×63.7	45×75×90

* The safety cover of magnetic contactor and thermal overload relay is optional.

. 27 . www.juhoele.com

40	AF	65	SAF		100AF		15	OAF
JMC-32a	JMC-40a	JMC-50a	JMC-65a	JMC-75a	JMC-85a	JMC-100a	JMC-130a	JMC-150
•	•	•	•	•	•	•	•	•
-	-	•	•	•	•	•	•	•
	ole		ole		3pole		1	ole
	VOC	-	VOC		1000V	;		00V
	VOC		1000V		1000V			00V
	60Hz		60Hz		50/60Hz			60Hz
8	kV	8	kV		8kV			kV
	ions per hour		ions per hour	18	00 operations per	rhour		ions per hour
	perations		perations		12 mil. operation			perations
	perations		perations	2 mil. oper		il. operations		perations
55	60	100	115	125	135	160	200	250
7.5	11	15	18.5	22	25	30	37	45
32	40	55	65	75	85	105	130	150
15	18.5	22	30	37	45	55	60	75
32	40	50	65	75	85	105	130	150
18.5	22	30	33	37	45	55	60	70
28	32	43	60	64	75	85	90	100
18.5	22	30	33	37	45	55	55	55
20	23	28	35	42	45	65	60	60
22	22	30	30	37	37	37	75	75
17	17	23	23	28	28	28	50	50
600	700	1000	1050	1100	1200	1320	1350	1800
260	300	550	700	750	800	900	950	1200
160	190	330	380	400	450	500	700	800
100	120	250	270	300	350	400	550	600
70	80	150	200	220	270	270	350	450
55	65	90	120	140	170	180	200	300
50	60	87	96	114	150	160	175	280
50	60	70	100	110	135	160	200	250
3	3	3	5	5	7.5	10	10	15
5	7.5	10	15	15	15	20	20	25
7.5	15	20	25	25	30	30	40	40
10	15	25	30	30	40	40	40	50
20	30	40	50	50	60	75	75	100
25	30	50	60	60	75	75	75	75
1P	2	-	-	-	3		-	4
0.	55	1.	05		1.93		0	4
69×8	3×90	79×10	6×119		94×140×135.8	3	2	.4
0.	77	1	.3		2.8		110-45	8,120.2
69×83	×117.1	79×106	6×146.4		94×140×172.3	}	TT8×12	8×130.3
2N0	2NC	2NC	2NC		2N02NC		2NC	D2NC
UA	4-1	UA	4-1		UA-1		U/	4-1
UA-2.	. UA-4	UA-2	UA-4		UA-2, UA-4		UA-2	, UA-4

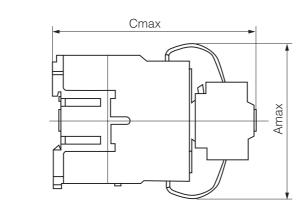
MT-32/□	MT-63/□	MT-95/□	MT-150/□
•	•	•	•
-	•	•	•
690	690	690	690
690	690	690	690
6	6	6	6
10A, 20	10A, 20	10A, 20	10A, 20
0.1~40A	4~65A	7~100A	34~150A
0.17	0.31/0.33	0.48/0.5	0.67
45×75×90	55×81×100	70×97×110	95×109×113

CJ19-43

Rated current (A)	380V	17	23	29	43	58	72
Controllable capacitor	230V	6.5	8.5	10	20	21	21
capacity (kVar)	400V	12	16.7	20	32	40	50
Rated insulation voltage U	li (V)	690	690	690	690	690	690
Restrained surge capacity		20In	20In	20In	20In	20In	20In
Electrical life		10	10	10	8	6	6
Operating characteristic		Pic	k up:(85%	~110%)Us	:Drop-out:	(20%~75%)Us
Operating characteristic Average power	Strar-up	Pic 76	k up:(85% 	~110%)Us 	Drop-out: 230	(20%~75%) 230)Us 230
	Strar-up Holding						,
Average power consumption	Holding	76	110 11	110 11	230	230	230

3. Outline And Mounting Dimension

<u>ø4.</u>5^{+0.3}


Bmax

F

CJ19-63

CJ19-95

1. Application Range

Parameter

Item

CJ19-25~43

CJ19 Changeover capacitor contactor is especailly used for low voltage shunt capacitor. And it widely used in reactive power compensation equipment with AC 50Hz and voltage 380V, inrush current system in the contactor can decrease shock to capactior and lower switching overvoltagein while breaking a circuit. Moreover, it can replace transfer device which are composed of one contactor and three current limiting reactors, its feature is small, light, joins convenient and reliable, huge capacity of turning on/off.

CJ19-25 CJ19-32 CJ19-43 CJ19-63 CJ19-80 CJ19-95

This product conforms to GB14048.4, IEC60947-4-1 standard.

2. Main Parameters And Technical Performance

Туре

CJ19-80	200
CJ19-95	200
4. Design Feature)
The contactor is a dir	ect moving d

Туре

CJ19-25

CJ19-32

CJ19-43

CJ19-63

CJ19-63~95

The contactor is a direct moving double breakpoint structure, the contact system is divided into two layers, and the upper layer has three pairs of current limiting contacts and current-limiting resistance consist of inrush current device. When it is closed, it is connected to the work contact after several milliseconds, and the permanent magnetic block in the current limit contact is released by the spring reaction. Disconnect the current-limiting resistor to make the capacitor work properly and the contactor internal circuit connection diagram (see figure 3).

CJ19-25~43 have two auxiliary contacts, CJ19-63~95 have three auxiliary contacts. For CJ19-25~43, Screws are available for installation, as well as the 35mm standard din rail. For CJ19-63~95, 35mm or 75mm standard din rail can be mounted are available for installation.

Bmax

Amax

117

130

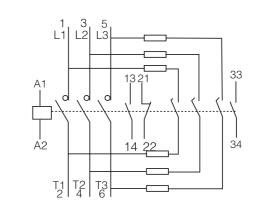
130

170

ø65

Bmax

47 58

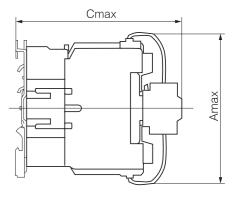

58

79

87

87

Photo 3 Example:CJ19-63/21,95/21


5. Ordering Instructions

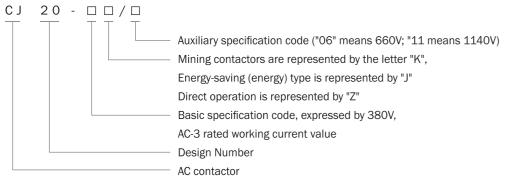
When placing an order, you should point out the below: Model, rated operational voltage and frequency of coil and quantity Example: Changeover capacitor contactor CJ19-32/11 AC 220 50Hz 500PCS

Cmax	E	F
123	35	50/60
130	40	50/60
135	40	50/60
150	40	100/110
158	40	100/110
158	40	100/110

CJ20-40

CJ20-100

CJ20-250


CJ20 AC contactor

1. Application Range

CJ20 series AC contactors are mainly used for AC 50Hz (or 60Hz), rated working voltage up to 660V (or 1140V) rated working current up to 630A in the power system for long-distance frequent connection and breaking of circuits, and can be connected with appropriate thermal relays Or an electronic protection device is combined into an electromagnetic starter to protect the circuit that may be overloaded.

The product complies with GB/T14048.4, IEC60947-4-1 and other standards.

2. Product Number

3. Outline And Mounting Dimension

The contactor is fixed and installed with screws. CJ20-10~25 can also be installed with 35mm standard rails. The appearance and installation dimensions are shown in Figure 1, Figure 2, Figure 3 and Table 4.

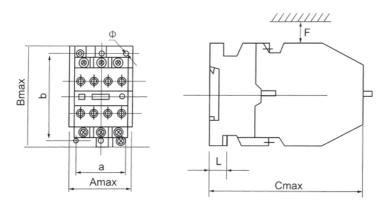
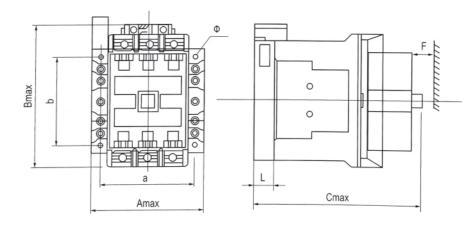
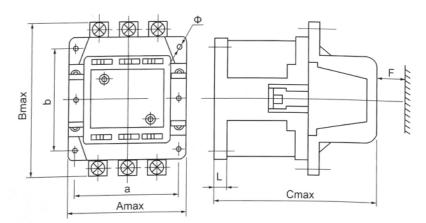




Figure 1 CJ20-10, 16, 25 shape and installation dimensions

Туре	А	В	С	а	b	φ	L	Fmin
туре				m	m			
CJ20-10	44.5	67.5	107	35±0.31	55±0.37	5 ^{+0.3}	8	10
CJ20-16	44.5	73	116.5	35±0.31	60±0.37	5 ^{+0.3}	8	10
CJ20-25	53	91	122	40±0.31	80±0.37	5 ^{+0.3}	7.5	10
CJ20-40	87	112.5	125	70±0.31	80±0.37	5 ^{+0.3}	15.5	30
CJ20-63	116	142	146	100±0.36	90±0.36	5.8 ^{+0.3}	13	60
CJ20-100	122	147	154	108±0.435	92±0.435	7 ^{+0.58} ₀	15	70
CJ20-160	146	187	178	130±0.5	130± 0.5	9 ^{+0.58} ₀	15	80
CJ20-250	190	235	230	160±0.5	130±0.5	9 ^{+0.58} ₀	17	100
CJ20-400	190	235	230	160±0.5	150±0.5	9 ^{+0.58} ₀	17	110
CJ20-630	245	294	287	210±0.575	150± 0.5	11 ^{+0.58}	20	120

Figure 2 CJ20-40 appearance and installation dimensions

Figure 3 CJ20-60~630 appearance and installation dimensions

CJX9-1P 30A

CJX9-2P 30A

CJX9-2P 40A

CJX9-3P 40A

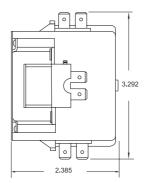
CJX9 AC contactor

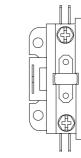
1. Partial Listing Of Available 1&2 Pole Contactors

1 Pole NO with or without shunt ; 2 Pole NO ; Silver Cadmium Oxide Contacts.

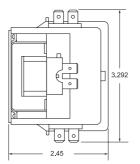
Fla Rating	Number Of Poles	24V Coil	120V Coil	208/240V Coil	277V Coil
20 FLA	1	CJX9-1XQ00AA	CJX9-1XT00AA	CJX9-1XU00AA	CJX9-1XV00AA
20 FLA	2	CJX9-2XQ00AA	CJX9-2XT00AA	CJX9-2XU00AA	CJX9-2XV00AA
25 FLA	1	CJX9-1XQ01AA	CJX9-1XT01AA	CJX9-1XU01AA	CJX9-1XV01AA
20 FLA	2	CJX9-2XQ01AA	CJX9-2XT01AA	CJX9-2XU01AA	CJX9-2XV01AA
30 FLA	1	CJX9-1XQ02AA	CJX9-1XT02AA	CJX9-1XU02AA	CJX9-1XV02AA
30 FLA	2	CJX9-2XQ02AA	CJX9-2XT02AA	CJX9-2XU02AA	CJX9-2XV02AA
40 FLA	1	CJX9-1XQ04GG	CJX9-1XT04GG	CJX9-1XU04GG	CJX9-1XV04GG
40 FLA	2	CJX9-2XQ04GG	CJX9-2XT04GG	CJX9-2XU04GG	CJX9-2XV04GG

INITIAL DIELECRIC STRENGTH Between contacts & coils: 2,200 VAC Between poles: 2,200 VAC (includes shunt) Between open contacts: 2,200 VAC (no shunt) ARC COVER Optional on 20-30 FLA ; Standard on 40 FLA INSULATION SYSTEM 130°C Class B TEMPERATURE EANGE -40°C to +65°C -40°F to +150°F UNIT WEIGHT 1Pole .5lb 2Pole .6lb


POWER POLE TERMINATIONS # 10-32 screw or box lug WIRE SIZE # 10-32 screw 16-8* Box lug 14-4 *must use ring terminal RECOMMENDED TIGHTENING TORQUE # 10-30 screw 22 in.lbs Box lug 40 in.lbs QUICK CONNECTS Coil terminals Dual: .250" QC Power terminals 1 Pole : Quad .250"QC 2 Pole : Dual or Quand.25"QC

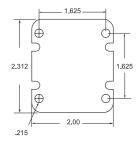

Coil Rating		1 Pole	Contacto	rs	2 Pole Contactors			
Nominal Coil Voltage	24	120	208/240	277	24	120	208/240	277
Nominal Coil Resistance Ohms	18	420	1800	2500	11	237	1000	1600
Maximum Pick Up Voltage	18	88	177	221	18	88	177	221
Minimum Drop Out Voltage	6-15	20-70	40-140	50-185	6-15	20-70	40-110	65-185
Nominal Inrush VA@50Hz	31	31	31	31	33	33	33	33
Nominal Inrush VA@60Hz	28	28	28	28	30	30	30	30
Nominal Sealed VA@50Hz	6	6	6	6	8	8	8	8
Nominal Sealed VA@60Hz	5	5	5	5	6.5	6.5	6.5	6.5
Maximum Coil Voltage	30	132	264	300	30	132	264	300

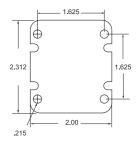
2. Electrical Rating


Full Load	Resistive Amps @	Locked Rotor Amps			Maximum	Horsepower
Amps	600VAC	@240/277 VAC	Amps @480 VAC	Amps @600 VAC	Voltage	Single Phase
			1 Pole Contactors			
20	30	120	100	80	120	1
20	50	120	100	80	140	2
25	35	125	125	100 -	120	1
25		125	125	100	240	2
30	40	125	126	100 -	120	1
30	40	125	120	100	240	2
40	50	160	160	120 –	120	2
40	50	100	100	120	240	3
			2 Pole Contactors			
20	30	100	100	80 -	120	2
20	30	100	100	80	240	3
25	35	125	125	100 -	120	2
25		125	125	100	240	3
30	40	125	125	100 -	120	2
30	40	120	120	125 100 -		3
40	50	160	160	120	120	2
40	50	TOO	TOO	120 -	240	3

3. Outline And Mounting Dimension

1 Pole Dimensions (Inches)




2 Pole Dimensions (Inches)

.33. www.juhoele.com

JLE1-D09,12,18

JLE1-D25,32

JQCX2-18

JLE1-D18N,25N,32N

JLE1 Magnetic starter

1. Application

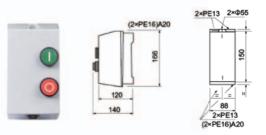
JLE1 magnetic starter (hereinafter referred to as the starter) is suitable for AC 50Hz or 60Hz, rated voltage to 660V, current to 95A circuit, used to control the direct start and stop of the motor, the starter with thermal overload relay can be used for the motor Carry out overload and phase failure protection.

2. Product Number

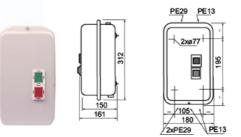
JLE	<u>1</u> - <u>□</u> 	
		- Basic specification code: use 380V, AC-3 rated working
		current level
		 Design Number
		 Magnetic starter

3. Structural Features

- The starter is of protective type, plastic shell type (JLE1-09~32) and metal shell type (JLE1-40~95), and the protection level can reach IP65;
- The operating mechanism is a manual start and stop button, and the starter is an irreversible starter with a thermal (overload) relay;
- The JLE1 AC contactor with 35mm standard rails selected in the starter can be directly buckled on the base of the starter. The thermal (overload) relay three-phase lead hard wire can be directly inserted into the three-phase main contact of the contactor, which is convenient for assembly and wiring.

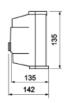

4. Main Parameters And Technical Performance

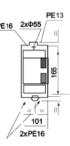
- The main technical performance indicators and component equipment of the starter (see Table 1);
- The starter rated control circuit voltage Us is: AC 50/60Hz, 24V, 42V, 110V, 220/230V, 240V, 380/400V, 415V, 440V, 480V, 600V;
- Range of action:
- \circ Pull-in voltage: 50 or 60H 80%Us-110% Us; 50/60Hz 85%Us~110%Us;
- Release voltage: 20%Us-75%Us
- The operating range of the starter with thermal (overload) relay has the operating characteristics of thermal relay;
- 5. The operating frequency with thermal relay is 30 times/hour;


5. Technical Parameters

	Rated	Rated	Rate	d worki	ng curre	ent (A)	F	Rated co	ntrol po	wer AC	-3(KW)		Equipped	Current	Equipped
model	heating	insulation	A	C-3	AC	-4	220V	380V	1151/	440V	5001/	660V	thermal relay	setting	AC contactor
	Current Ith(A)	Voltage Ui(V)	380V	660V	380V	660V	230V	400V	4131	4400	5000	690V	model	range(A)	model
									0.37	0.37	0.37	0.37	JLR2-13	0.63-1	JLC1-09
								0.37	0.55	0.55	0.55	0.55	JLR2-13	1-1.6	JLC1-09
							0.75	0.75	1.1	1.1	1.1	1.1	JLR2-13	1.6-2.5	JLC1-09
JLE1-09	20						1.1	1.5	1.5	1.5	2.2	2.2	JLR2-13	2.5-4	JLC1-09
							1.5	2.2	2.2	2.2	3.7	3.7	JLR2-13	4-6	JLC1-09
							2.2	3	3.7	3.7	4	4	JLR2-13	5.5-8	JLC1-09
							2.2	4	4	4	5.5	5.5	JLR2-13	7-10	JLC1-09
JLE1-12	20	600	12	8.9	5	2	3	5.5	5.5	5.5	7.5	7.5	JLR2-13	9-13	JLC1-12
JLE1-18	32	000	18	10.6	7.7	3.8	4	7.5	9	9	10	10	JLR2-13	12-18	JLC1-18
JLE1-25	40		25	18	8.5	4.4	5.5	11	11	11	15	15	JLR2-13	17-25	JLC1-25
JLE1-32	50		32	21	12	7.5	7.5	15	15	15	18.5	18.5	JLR2-23	23-32	JLC1-32
JLE1-40	60		40	34	18.5	9	11	18.5	22	22	30	30	JLR2-23	30-40	JLC1-40
JLE1-50	80		50	39	24	12	15	22	25	30	33	33	JLR2-33	37-50	JLC1-50
JLE1-65	80		65	42	28	14	18.5	30	37	37	37	37	JLR2-33	55-70	JLC1-65
JLE1-80	100		80	49	37	17.3	22	37	45	45	45	45	JLR2-33	63-80	JLC1-80
JLE1-95	100		95	49	44	21.3	25	45	45	55	45	45	JLR2 -93	80-93	JLC1-95

6. Shape And Installation Dimensions (mm)




JLE1-09~18 appearance and installation dimensions

JLE1-40~95 appearance and installation dimensions

JLE1-25~32 appearance and installation dimensions

JLR2-D13

JLR2-D Thermal Overload Relay

1. Application

JLR2 series thermal relay is suitable for using in the circuit rated voltage up to 660V, rated current 93A AC 50/ 60Hz, for over-current protection of AC motor. The relay has the differential mechanism and temperature compensation and can plug in JLC1 series AC contactor. The product conforms to IEC60947-4-1 stardand.

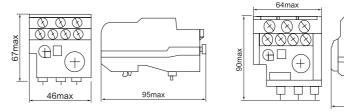
2. Motion Characteristic: Three-phase Balance Motion Time

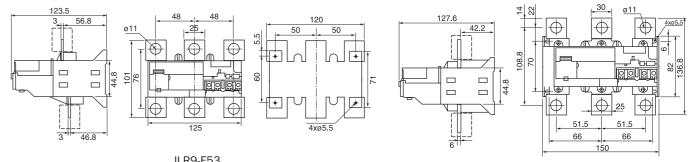
No	Times of the setting current(A)	Motion time		Start condition	Ambient temperature	
1	1.05		>2h		Cold state	
2	1.2		<2h		Heat state	-
3	1.5		<4min		(Following the No.1 test)	20±5°C
1	7.2	10A	2s <tp≤10s< td=""><td>≤63A</td><td>Cold state</td><td>-</td></tp≤10s<>	≤63A	Cold state	-
4	1.2	10	4s <tp≤10s< td=""><td>>63A</td><td>Colu State</td><td></td></tp≤10s<>	>63A	Colu State	

3. Phase-losing Motion Characteristic

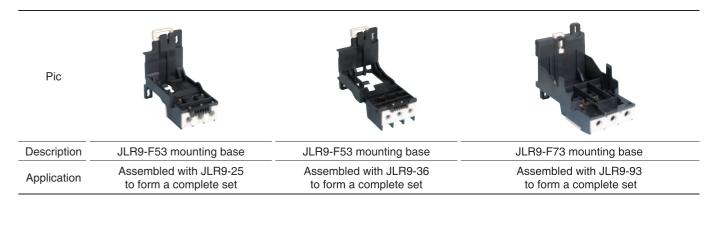
No	Times of the se Any two phases	tting current(A) Another phase	Motion time	Start condition	Ambient temperature
1	1.0	0.9	>2h	Cold state	
	1 1 5		<0h	Heat state	20±5°C
2	1.15	0	<2h	(Following the No.1 test)	

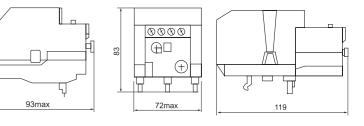
4. Specification




JLR2-D33

Туре	Number	Setting range (A)	For contactor	
	1301	0.1~0.16	JLC1-09~32	
-	1302	0.16~0.25	JLC1-09~32	
-	1303	0.25~0.4	JLC1-09~32	
-	1304	0.4~0.63	JLC1-09~32	
_	1305	0.63~1	JLC1-09~32	
-	1306	1~1.6	JLC1-09~32	
	1307	1.6~2.5	JLC1-09~32	
JLKZ-D13 -	1308	2.5~4	JLC1-09~32	
-	1310	4~6	JLC1-09~32	
-	1312	5.5~8	JLC1-09~32	
-	1314	7~10	JLC1-09~32	
-	1316	9~13	JLC1-09~32	
_	1321	12~18	JLC1-09~32	
_	1322	17~25	JLC1-32	
	2353	23~32	CJX2-09~32	
JLR2-D23 –	2355	30~40	JLC1-09~32	
	3322	17~25	JLC1-09~32	
_	3353	23~32	JLC1-09~32	
_	3355	30~40	JLC1-09~32	
	3357	37~50	JLC1-09~32	
JLR2-D33 –	3359	48~65	JLC1-09~32	
_	3361	55~70	JLC1-09~32	
-	3363	63~80	JLC1-09~32	
-	3365	80~93	JLC1-95	
	4365	80~104	JLC1-95	
JLR2-D43	4367	95~120	JLC1-95~115	
-	4369	110~140	JLC1-115	


5. Outline And Mounting Dimension


JLR9-F53

6. Accessories

Thermal Overload Relay Series

Number	Setting range (A)	For contactor
F5369	90~150	JLC1-F115~F150
F5357	30~50	JLC1-F115~F185
F5363	48~80	JLC1-F115~F185
F5367	60~100	JLC1-F115~F185
F5369	90~150	JLC1-F115~F185
F5371	132~220	JLC1-F225~F265
F7375	200~330	JLC1-F225~F500
F7379	300~500	JLC1-F225~F500
F7381	380~630	JLC1-F400~F630

JLR9-F73

JLRD series thermal relay is suitable for using in the circuits rated voltage up to 660V, rated

current 93A AC 50/60Hz, for over-current protection of AC motor. The relay has the differential

mechanism and temperature compensation and can plug in JLC1N series AC contactor. The

JLRD-13

٦	No	Times of the setting current(A)	Motion time		Start condition	Ambient temperature	
	1	1.05	>2h		Cold state		
	2	1.2		<2h		Heat state	
	3	1.5		<4min		(Following the No.1 test)	20±5°C
	4	7.2	10A	2s <tp≤10s< td=""><td>≤63A</td><td>Cold state</td><td></td></tp≤10s<>	≤63A	Cold state	
	4	1.2	10	4s <tp≤10s< td=""><td>>63A</td><td>Colu State</td><td></td></tp≤10s<>	>63A	Colu State	

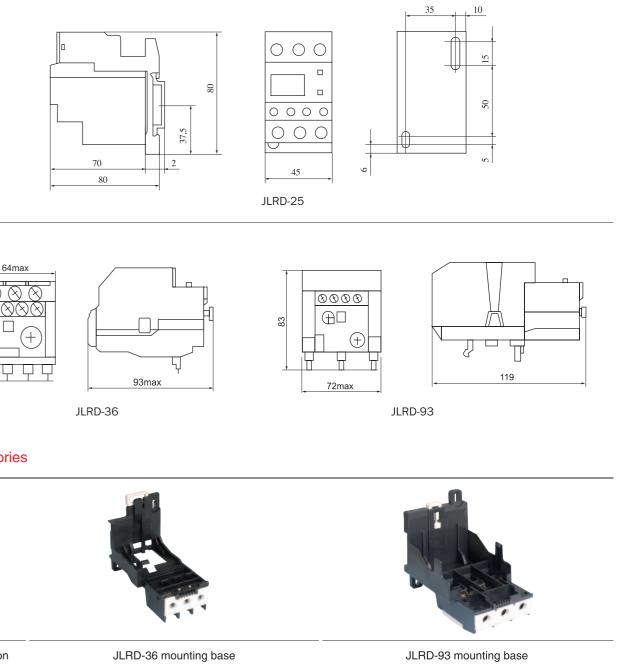
3. Phase–Losing Motion Characteristic

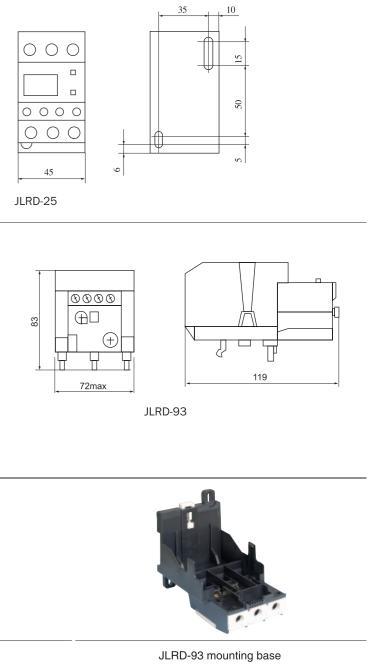
product conforms to IEC60947-4-1 stardand.

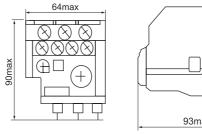
1. Application

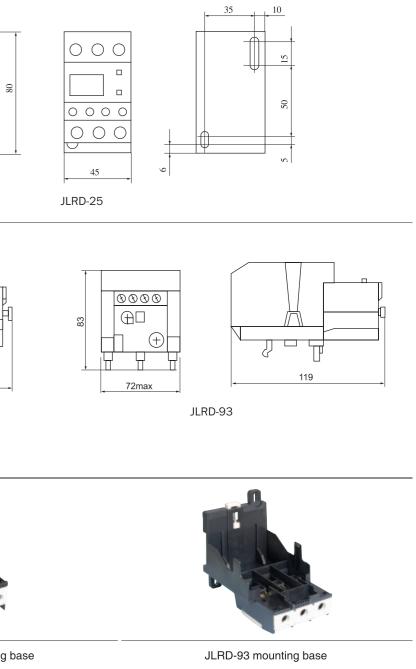
4. Specification

No	Times of the se Any two phases	tting current(A) Another phase	Motion time	Start condition	Ambient temperature
1	1.0	0.9	>2h	Cold state	
2	1 1 5	0	<0h	Heat state	20±5°C
2	1.15	0	<2h	(Following the No.1 test)	

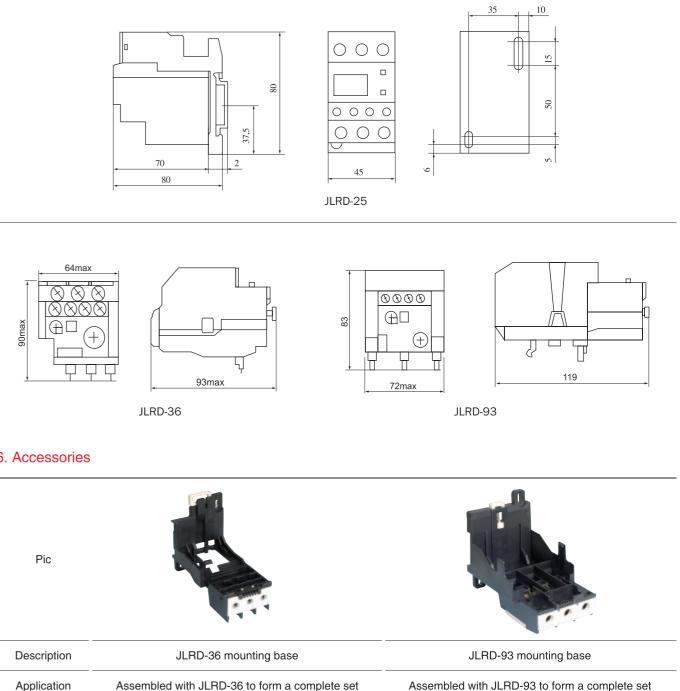



JLRE-13


JLRD-33


Туре	Number	Setting range (A)	For contactor
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D01	0.10~0.16	JLC1-DN-09~38
	D01	0.16~0.25	JLC1-DN-09~38
	D02	0.25~0.40	JLC1-DN-09~38
	D03	0.40~0.63	JLC1-DN-09~38
	D05	0.63~1	JLC1-DN-09~38
	D06	1~1.7	JLC1-DN-09~38
JLRD-13	D07	1.6~2.5	JLC1-DN-09~38
JEND-13	D08	2.5~4	JLC1-DN-09~38
	D10	4~6	JLC1-DN-09~38
	D12	5.5~8	JLC1-DN-09~38
	D14	7~10	JLC1-DN-09~38
	D16	9~13	JLC1-DN-09~38
	D21	12~18	JLC1-DN-09~38
	D22	16~24	JLC1-DN-09~38
	3322	17~25	JLC1-DN-40~95
	3353	23~32	JLC1-DN-40~95
	3355	30~40	JLC1-DN-40~95
JLRD-33	3357	37~50	JLC1-DN-50~95
JLKD-33	3359	48~65	JLC1-DN-50~95
	3361	55~70	JLC1-DN-65~95
	3363	63~80	JLC1-DN-65~95
	3365	80~93	JLC1-DN-95

5. Outline And Mounting Dimension



6. Accessories

J3UA54

J3UA59

J3UA-58

J3UA Thermal Overload Relay

1. Application

J3UA thermal relay is suitable for AC 50/60Hz, voltage up to 660V and current up to 630A, general AC motor of long or discontinuous long operation, used as overload protection and has the functions of breaking phase protection, temperature compensation, and trip indication. It can automatically and manually get back. It can be fixed with contactor CJX1 together, also be independtly fixed. The product conforms to IEC60947-4-1 stardand.

2. Motion Characteristic: Three-Phase Balance Motion Time

No	Times of the setting current(A)	Motion ti	me	Start condition	Ambient temperature
1	1.05	>2h		Cold state	
2	1.2	<2h		Heat state	
3	1.5	<4mir	1	(Following the No.1 test)	20±5°C
1	7.2	10A 2s <tp≤10s< td=""><td>≤63A</td><td>Cold state</td><td></td></tp≤10s<>	≤63A	Cold state	
4	1.2	10 4s <tp≤10s< td=""><td>>63A</td><td>Colu state</td><td></td></tp≤10s<>	>63A	Colu state	

3. Phase–Losing Motion Characteristic

No	Times of the se Any two phases	tting current(A) Another phase	Motion time	Start condition	Ambient temperature
1	1.0	0.9	>2h	Cold state	
2	1.15	0	<2h	Heat state (Following the No.1 test)	20±5°C

4. Specification

Туре	Number	Setting range (A)	For contactor	Туре	Number	Setting range (A)	For contactor
	OA	0.1~0.16			OA	0.1~0.16	
	00	0.16~0.25			00	0.16~0.25	
	0E	0.25~0.4			0E	0.25~0.4	
	OG	0.4~0.63			0G	0.4~0.63	
	U	0.63~1			OJ	0.63~1	
					OK	0.8~1.25	
	OK	0.8~1.25	J3TF40	J3UA52	1A	1~1.6	J3TF42 J3TF43
	1A	1~1.6			1B	1.25~2	
	1B	1.25~2			10	1.6~2.5	
J3UA50	1C	1.6~2.5			1D	2~3.2	
	1D	2~3.2	J3TF41		1E	2.5~4	
	1E	2.5~4			1F	3.2~5	
	1F	3.2~5			1G	4~6.3	
	1G	4~6.3			1H	5~8	-
					1J	6.3~10	
	1H	5~8			1K	8~12.5	-
-	1J	6.3~10			2A	10~16	
	1K	8~12.5			2B	12.5~20	
	2S	10~14.5			20	16~25	

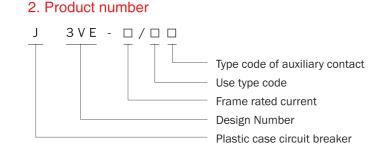
Type Number Setting range (A) For contactor 4~6.3 1G 1J 6.3~10 2A 10~16 2B 12.5~20 J3UA54 J3TB44 2C 16~25 2D 20~32 2Q 25~36 OA 0.1~0.16 0C 0.16~0.25 0E 0.25~0.4 0G 0.4~0.63 OJ 0.63~1 0.8~1.25 0K 1A 1~1.6 1B 1.25~2 1C 1.6~2.5 1D 2~3.2 1E 2.5~4 J3TF44 J3UA55 1F 3.2~5 J3TF45 1G 4~6.3 1H 5~8 1J 6.3~10 1K 8~12.5 2A 10~16 2B 12.5~20 2C 16~25 2D 20~32 2Q 25~36 2R 32~40 36~45 8M 1G 4~6.3 8A 11~17 2B 12.5~20 2C 16~25 2D 20~32 J3TF46 2E 25~40 J3TF47 J3UA58 2F 32~50 J3TF48 2T 40~57 J3TF49 2P 50~63 2V 57~70 2U 63~80 8W 70~88 0A 0.1~0.16 0C 0.16~0.25 J3TF40 0E 0.25~0.4 J3UA59 J3TF41 0G 0.4~0.63 0J 0.63~1

_		0	_
Туре	Number	Setting range (A)	For contactor
	OK	0.8~1.25	
	1A	1~1.6	
	1B	1.25~2	
	10	1.6~2.5	
	1D	2~3.2	
	1E	2.5~4	
	1F	3.2~5	J3TF42
	1G	4~6.3	J3TF43
	1H	5~8	J3TF44
J3UA59	1J	6.3~10	J3TF45
	1K	8~12.5	J3TF46
	2A	10~16	J3TF47
	2B	12.5~20	
	20	16~25	
	2D	20~32	
	2E	25~40	
	2M	32~45	
	2T	40~57	
	2P	50~63	
	2H	55~80	
1211460	2W	63~90	
J3UA60	2X	80~110	J3TF50
	3H 3J	90~120	
	2H	110~135 55~80	
	2H 2W	63~90	
	2 W		
J3UA61	2X 3H	80~110 90~120	J3TF54
	31	110~135	
	3K	120~150	
	2H	55~80	
	2W	63~90	
	2X	80~110	
	3H	90~120	J3TF52
J3UA62	3J	110~135	J3TF53
	3K	120~150	561100
	3L	135~160	
	3M	150~180	
	2K	80~125	
	3B	125~200	J3TF54
J3UA66	30	160~250	J3TF55
	3D	200~320	
	3E	250~400	
	3F	320~500	
J3UA68	3G	400~630	J3TF56
220,000			J3TF57

J3VE1

J3VE3

J3VE4



J3VE Motor Protection Circuit Breaker

1. Application

J3VE series molded case circuit breakers (hereinafter referred to as circuit breakers) are suitable for dry AC 50Hz, rated working voltage AC380V, AC660V, and rated current 0.1A to 63A. It can be used as overload and short circuit protection of electric motors. It can also be used as power distribution circuit. Used for overload and short circuit protection of electrical equipment. Under normal conditions, it can also be used for infrequent switching of lines and infrequent starting of motors.

This series of products comply with GB/T14048.2 and IEC60947-2 standards.

3. Structure

- This series of circuit breakers are mainly composed of mechanism, contact system, tripping device of arc extinguishing system, insulating base and shell.
- J3VE1 type circuit breakers are equipped with auxiliary contacts. J3VE3 and J3VE4 type circuit breakers are not equipped with auxiliary contacts, but they can be equipped with auxiliary contact accessories.
- There are two types of trips in circuit breakers: one is a bimetallic inverse time delay trip for overload protection; the other is an electromagnetic instantaneous trip for short-circuit protection. The circuit breaker also has a temperature compensation device, so the protection characteristics are not affected by the ambient temperature.
- J3VE1, J3VE3 and J3VE4 circuit breakers are operated by button, knob and handle respectively.
- The circuit breaker is installed in front of the board. J3VE1, J3VE3, type circuit breakers also have a standard mounting card, which can be directly installed on a standard rail with a width of 35mm (should comply with DINEN50022).
- The mechanism of J3VE3 and J3VE4 circuit breakers uses quick-on and quick-break structures, and their tripping devices have limited current characteristics, so the circuit breaker has a high short-circuit breaking capacity.
- The front of the circuit breaker has a pointer for adjusting the current of the tripping device, which can set the tripping current within the specified range.
- The circuit breaker can be attached with accessories such as undervoltage release, shunt release, indicator light, lock, and various protection types of enclosures. Please specify when ordering.

4. Tripping characteristics

		Current		Types of auxiliary contacts									
Туре	Rated current of trip unit (A)	range of trip				One normally open and one normally closed		Two normally open		Two normally closed			
		unit (A)		Order number	correspond	Order number	correspond	Order number	correspond	Order number	correspond		
	0.16	0.1-0.16	В	20/10-B	005/2BU00	20/11-B	005/2BU00	20/11-B	005/2BU00	20/11-B	005/2BU00		
	0.25	0.16-0.25	С	-C	-2CU00	-C	-2CU00	-C	-2CU00	-C	-2CU00		
	0.4	0.25-0.4	D	-D	-2DU00	-D	-2DU00	-D	-2DU00	-D	-2DU00		
	0.63	0.4-0.63	Е	-E	-2EU00	-E	-2EU00	-E	-2EU00	-E	-2EU00		
	1	0.63-1	F	-F	-2FU00	-F	-2FU00	-F	-2FU00	-F	-2FU00		
	1.6	1-1.6	G	-G	-2GU00	-G	-2GU00	-G	-2GU00	-G	-2GU00		
	2.5	1.6-2.5	Н	-H	-2HU00	-H	-2HUO0	-H	-2HUO0	-H	-2HU00		
J3VE1	3.2	2-3.2	u	-u	-*8HU00	-U	-*8HU00	-U	-*8HU00	-U	-*8HU00		
JOVET	4	2.5-4	J	-J	-2JU00	-J	-2JU00	-J	-2JU00	-J	-2JU00		
	5	3.2-5	V	-V	-*8JU00	-V	-*8JU00	-V	-*8JU00	-V	-*8JU00		
	6.3	4-6.3	K	-K	-2KU00	-K	-2KU00	-K	-2KU00	-K	-2KU00		
	8	5-8	W	-W	-*8KU00	-W	-*8KU00	-W	-*8KU00	-W	-*8KU00		
	10	6.3-10	L	-L	-2LU00	-L	-2LU00	-L	-2LU00	-L	-2LU00		
	12.5	8-12.5	Х	-X	-*8LU00	-X	-*8LU00	-X	-*8LU00	-X	-*8LU00		
	16	10-16	М	-M	-2MU00	-M	-2MU00	-M	-2MU00	-M	-2MU00		
	20	14-20	Ν	-N	-2NU00	-N	-2MU00	-N	-2MU00	-N	-2MU00		

Tupo	Trip roted ourrept (A)	Current rectification	Codename	Types of auxiliary contacts			
Туре	Trip rated current (A)	range of trip unit (A)	Couename	Order number	correspond		
	1.6	1-1.6	G	32/10-G	000/2GA00		
	2.5	1.6-2.5	Н	-H	-2HAOO		
	4	2.5-4	J	-J	-2JAO0		
	6.3	4-6.3	К	-K	-2KAOO		
J3VE3	10	6.3-10	L	-L	-2LAO0		
JSVES	12.5	8-12.5	L	-L	*8LA00		
	16	10-16	Μ	-M	-2MA00		
	20	12.5-20	Μ	-M	*8MA00		
	25 16-25		0	-0	-2NA00		
	32	22-32	Р	-P	-2PA00		

.43. www.juhoele.com

CNJUHO[°]

5. Tripping characteristics

Tupo	Trip rated current (A)	Current rectification	Codename	Types of auxiliary contacts		
Туре	inprated current (A)	range of trip unit (A)	Couename	Order number	correspond	
	10	6.3-10	L	63/10-L	200/0CL00	
	16	10-16	Μ	-M	-OCMO0	
	25	16-25	Р	-P	-OCPOO	
J3VE4	32	22-32	Q	-Q	-OCQ00	
	40	28-40	R	-R	-OCROO	
	50	36-50	S	-S	-0CS00	
	63	45-63	Т	-T	-0CT00	

6. The Main Technical Parameters

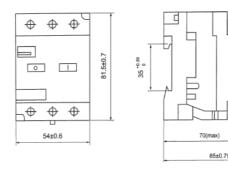
Basic parameters of circuit breaker

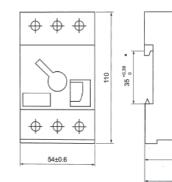
Model		J3VE1	J3VE1 J3VE3					
Number of poles			3 poles					
Rated working voltage Ue		-	AC380V,AC660V					
Rated insulation voltage Ui			660V					
Rated impulse withstand volta	age Uimp	6KV						
Frame grade rated current A		20	32 63					
Rated short-circuit breaking	AC380V	1.5	10	22				
capacity (KA)	AC660V	1	3	7.5				
Mechanical life (times)		40000	4000 20000					
Electric life (times) 5000 5000 1500								

Auxiliary contact parameters

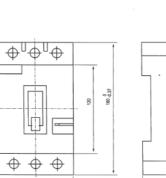
Use category	Conventional heating current A	Rated insulation voltage V	Rated working electricity	Rated working electricity
AC-15	6	660	AC220	1.8
	6	000	AC380	1.5

Note:J3VE1,2 can be equipped with auxiliary contact components alone.

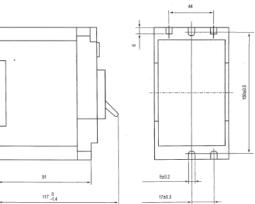

Overcurrent trip characteristics

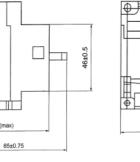

Serial number	Circ	cuit breaker for power distribut	tion	Ambient air temperature	
	Test current multiple	Action time	Starting state		
1	1.05In	Within 1 hour No tripping	Cold start	+30°C± 2°C	
2	1.3lln	Trip within 1 hour	Connection 1 proceed		
3	10In	<0.2s trip	Cold start	Any suitable temperature	

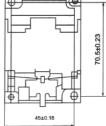
Overcurrent trip characteristics

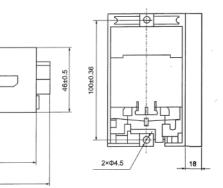

o voroanone anp e									
Serial number		Circuit breaker for power distribution							
Senai number	Test current multiple	e Action time Starting state		temperature					
1	1.05In	No tripping within 2 hours	Cold start						
2	1.2In	Trip within 2 hours	Connect sequence 1 to pass and sequence 1 current reaches	+20°C±5°C					
3	1.5In	Trip within 3min	Start after thermal equilibrium						
4	7.2In	2~10s trip	Cold start						
5	12In <0.2s trip		Cold start	Any suitable temperature					

7. Outline and Mounting Dimension




70 -0.45



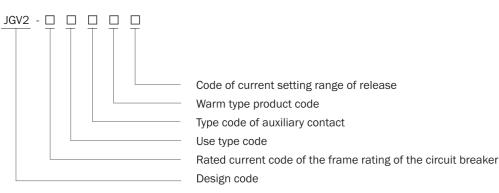

96(max)

106 ⁰_-0.87

JGV2-32

JGV2-32ME

JGV3-80


JGV2-C

JGV2 Motor Protection Circuit Breaker

1. Application range

JGV2 series is a motor protection circuit breaker, adopting modular design, beautiful appearance, small size, phase failure protection, built-in thermal relay, strong functionality and good versatility. JGV2 series comply with IEC60947.2 and EC60947-4.1 and EN60947-1 standards. Kaitian and contactor can form a direct motor starter. The enclosure protection grade of JGV2 series can reach IP65. There are three types of products in this series: JGV2-M and ME are button-controlled motors with thermal-magnetic protective circuit breakers; JGV2-RS are transfer switch-controlled motors with thermal-magnetic protective circuit breakers; JGV2-LS, LE are transfer switch control The motor with magnetic protection circuit breaker (without thermal delay protection).

2. Product number

3. Structural features

- Three-phase bimetallic sheet type
- With continuous adjustable device for setting current
- With temperature compensation
- With action instructions
- Has a testing organization
- Has a stop button
- With manual and automatic reset buttons
- With electrically separable one normally open and one commonly closed contact

4. Technical Characteristic

													Table 1
-	Rated current of	Setting current adjustment range (A)							ng capa ing capa				Arcing distance
Туре	trip unit In(A)		230/	240V	400/415V 440V		OV	500V		690V		(mm)	
			lcu	lcs	lcu	lcs	lcu	lcs	lcu	lcs	lcu	lcs	
	0.16	0.1-0.16	100	100	100	100	100	100	100	100	100	100	40
101/0 00	0.25	0.16-0.25	100	100	100	100	100	100	100	100	100	100	40
JGV2-32	0.4	0.25-0.4	100	100	100	100	100	100	100	100	100	100	40
	0.63	0.4-0.63	100	100	100	100	100	100	100	100	100	100	40
	1	0.63-1	100	100	100	100	100	100	100	100	100	100	40
	1.6	1-1.6	100	100	100	100	100	100	100	100	100	100	40
	2.5	1.6-2.5	100	100	100	100	100	100	100	100	3	2.25	40
	4	2.5-4	100	100	100	100	100	100	100	100	3	2.25	40
	6.3	4-6.3	100	100	100	100	50	50	50	50	3	2.25	40
	10	6-10	100	100	100	100	15	15	10	10	3	2.25	40
	14	9-14	100	100	15	7.5	8	4	6	4.5	3	2.25	40
	18	13-18	100	100	15	7.5	8	4	6	4.5	3	2.25	40
	23	17-23	50	50	15	6	6	3	4	3	3	2.25	40
	32	24-32	50	50	15	6	6	3	4	3	3	2.25	40
101/2 00	40	25-40	-	-	35	17.5	-	-	-	-	4	2	50
JGV3-80 -	63	40-63	-	-	35	17.5	-	-	-	-	4	2	50
	80	56-80	-	-	35	17.5	-	-	-	-	4	2	50

Rated power of the three-phase motor controlled by the circuit breaker (see Table 2)

	Rated current of	Rated current adjustment range	Standard rated power of three-phase motor (kW)									
Туре	trip unit In			AC-3, 50Hz/60Hz								
	(A)	(A)	230/240V	400V	415V	440V	500V	690V				
	0.06	0.1-0.16	-	-	-	-	-	-				
	0.25	0.6-0.25	-	-	-	-	-	-				
JGV2-32	0.4	0.25-0.4	-	-	-	-	-	-				
	0.63	0.4-0.63	-	-	-	-	-	0.37				
	1	0.63-1	-	-	-	0.37	0.37	0.55				
	1.6	1-1.6	-	0.37	-	0.55	0.75	1.1				
	2.5	1.6-2.5	0.37	0.75	0.75	1.1	1.1	1.5				
	4	2.5-4	0.75	1.5	1.5	1.5	2.2	3				
	6.3	4-6.3	1.1	2.2	2.2	3	3.7	4				
	10	6-10	2.2	4	4	4	5.5	7.5				
	14	9-14	3	5.5	5.5	7.5	7.5	9				
	18	13-18	4	7.5	9	9	9	11				
	23	17-23	5.5	11	11	11	11	15				
	32	24-32	7.5	15	15	15	18.5	26				
JGV3-80	40	25-40	-	18.5	-	-	-	30				
1010-00	63	40-63	-	30	-	-	-	45				
	80	56-80	-	37	-	-	-	55				

The enclosure protection level is: IP20;

The operating performance of the circuit breaker (see Table 3)

Tupo	From a rotad ourrant lam(A)	Operating evalue par hour	Operation cycle times				
Туре	Frame rated current Inm(A)	Operating cycles per hour	Power ups	No power	Total		
1	32	120	2000	10000	12000		
2	80	120	2000	10000	12000		

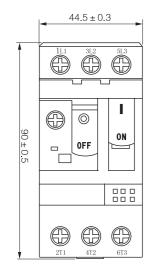
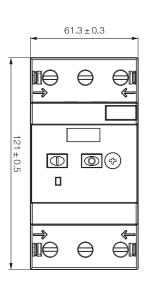
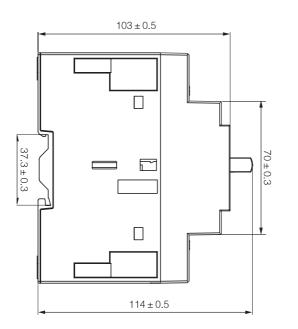

.47. www.juhoele.com

Table 2

Table 1


Table 3


5. Outline and Mounting Dimension

JGV2-32M

JGV3-80M

1. Application

JM1-125/3P

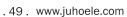
JM1-225/3P

JM1-400/3P

JM1-630/3P

JM1 series moulded case circuit breaker is one of products developed and manufactured by adopting international advanced technology. It is supplied with rated insulating voltage 550 and 800V and used for circuit of AC 50/60Hz, rated operating voltage AC 400V (or below), rated operating current up to 1600A for infrequent changing over and starting of the motors.The products conforms to IEC60947-2 standard.

2 Main Technical Specification


2. Main Technical Specification Table 1													
Туре	Rated current (A)	Polo ating operating Over		distance	Ultimate short circuit breaking capacity (kA)	Servies short circuit breaking capacity (kA)	Operation perform- ance	Utilization category					
JM1-63L	(6),10,16,20,		500V		0	25	18						
JM1-63M	25,32,40,50,63		5000		0	50	35	1500	8500				
JM1-100L	(10),16,20,25,32,				0(≤50)	35	22		8500				
JM1-100M					0(≤50)	50	35						
JM1-100H	40,50,63,80,100	2.4	Ļ	1001/	0(≤50)	85	50						
JM1-225L	100 105 160				≤50	35	22		7000				
JM1-225M	- 100,125,160,	3, 4			≤50	50	35						
JM1-225H	180,200,225				≤50	85	50						
JM1-400L	225,250,315,				≤50	50	35	-					
JM1-400M	350,400		0001	400V	≤100	65	42						
JM1-630L	400		800V		≤100	50	35						
JM1-630M	500				≤100	65	42						
JM1-630H	630				≤100	100	65	1000	4000				
JM1-800M	630,700,				≤100	75	50						
JM1-800H	800				≤100	100	65						
JM1-1250M	1000 1050	3			≤100	100	65						
JM1-1250H	1000,1250				≤100	125	75						
JM1-1600M	1600				≤100	150	80						

Note: 6A without thermal protection The N-pole of four-poles breaker is sited at the right side of the product has four types: Type A: Without current trip-lease on N pole which making all the time, not closing and opening with the other three poles.

three poles.

3. Protection Characteristic

The thermodynamic release of a circuit breaker provides the feature of inverse time-delay, while the magnetic release is the instantaneous operation as shown on table 2(distribution circuit breaker) and table 3 (motor protection circuit breaker).

JM1 Moulded Case Circuit Breaker

Type B: Without current trip-release on N pole which closing and opening with the other poles.

Type C: With current trip-release which closing and opening with the other three poles.

Type D: With current trip-release which making all the time not closing and opening with the other

JM1-400L/3P

Back panel connection

Plug-i

Thermodynamic release Operating current of (ambient temperature $\frac{\text{land } +40^{\circ}\text{C}}{\text{marine } +45^{\circ}\text{C}}$) magnetic release (A)

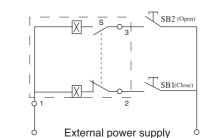
≥1 < 1 10In±20% ≥2 < 2 ≥2 < 2 5In±20% 10In±20% Table 3

Rated current	(amb	Operating current o			
of release (A)	1.0In(cold state) non-trip time(h)	1.20In(heat state) trip time (h)	1.50In(heat state) trip time (h)	7.2In(cold state) trip time(h)	magnetic release (A
10≤ln≤225	>2	< 2	≤4min	4s < Tp≤10s	12In±20%
225 < In≤630	22	~ 2	≤8min	6s < Tp≤20s	12111122070

4. Accessories of Circuit Breaker

- 4.1 The external accessories of the breaker
- Motor-driven operation device

Rated current of


release (A)

10≤ln≤63

63 < In ≤100

100 < In≤800

1) Wiring diagram of type CDM electromagnetic operation device(fitting JM1-63,100,225) see the following drawing (wiring diagram of the external accessories of the breaker in the dotted frame)

Code description: SB₁SB₂ stand for push button.(provided by users themselves) Number "1""2""3" stand for number of wiring terminals.

Voltage rating: AC50/60Hz 230V, 400V, DC 220V

Electromagnetic operation device

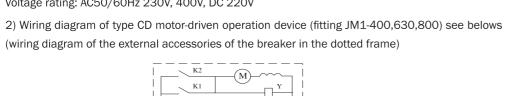
Motor-driven operation device

K1 <u>K2</u> _ K1 K1 TSB1 (SB2 (Ope External power supply

Code description: SB₁SB₂ stand for push button. (provided by users themselves) "X" stands for line connection terminals Voltage rating: AC50/60Hz 230V,400V, DC220V

Table 2

JM1L-225M/3P


exchangeable. The breakers are suitable for isolation, its symbol are: — IX-IEC60947-1 and GB/T 14048.1 General IEC60947-2 and GB 14048.2 Low voltage breakers IEC60947-4 and GB 14048.4 Contactors and motor starters

protection.

2. Main Technical Specifications

Туре		JM1L-10	JM1L-225			JM1	L-400	JM1L-6	630				
Frame current Inm(A)		100	225			400		630)				
Rated current In(A)		0)16,20,25 0,50,63,80,		100, 125, 160, 180, 200, 225			225, 250, 315, 350,400		400, 500	, 630			
Pole number	:	3	4		3	4	3	4	3	4			
Rated ilnsulation voltage Ui(V)					AC	800							
Rated working voltage Ue(V)					AC 4	400V							
Rated impulse with stand voltage Uimp(V)		8000											
Arc-over distance(mm)		>50											
Breaking capacity grade		М		М		Н	М		М				
Limiting short-circuit breaking capacity Icu (kA)	^g 50	85	50	50	85	50	6	65	65				
Service short-circuit breaking capacity lcs(kA)	35	35 50		35 50		35	42		42				
Rated residual Non-c operating current type	delay 100,	100/300/500											
$\begin{tabular}{c} Delay \\ I \bigtriangleup n(mA) \\ type \\ typ$	/ 100,	100/300/500											
Rated residual non-operating current I \triangle no(mA)	1/2	1/2 I △ n											
Operation	150	1500			1000			1000					
performance (time)		8500			7000				4000				

JM1L-400M/4P

JM1L Earth Leakage Circuit Breaker

1. Application and Description

JM1L series earth leakage circuit breaker are one of the new type earth leakage breakers which have been developed by the company using international advanced design and manufacturing technology. Suitable for a line of AC50/60Hz, rated voltage up to 400V, rated current 16A to 630A. and is acted as infrequent changeover of circuit or infrequent starting of motor. The breaker has overload, short-circuit and under-voltage protective function, which can protect the circuit and the power equipment against damage, meanwhile, it can provide protection to these fire dangers that caused by these long-time existed grounding fault that can not be detected by the over-current

- This breaker can be installed vertically(upright) or horizontally(transverse).
- Wiring of the breaker can not be in adverse direction, that means power supply line must be connected to terminal 1,3 and 5,and the load line connected to terminal 2,4 and 6.
- The rated residual operating current I \triangle n and the maximum breaking time can be adjusted on site according to practical condition.
- The leakage protection module still can work normally when the phase voltage reduce to 50V.
- It has the same overall size with the JM1 series breakers, which make the installation more
- The breakers comply with the demands of the following standards:
- IEC60947-5.1 and GB 14048.5 Electrical equipments of electromechanical control circuit

Note: According to the pole number of product, it calssifies three and four poles. The neutral pole (N-Pole) of the four-poles products has four types:

Type A: N-pole without over-current release unit, it has been connected all the time, not closing and opening with the other three poles.

 $\label{eq:stable} \ensuremath{\mathsf{Type}}\ \mathsf{B:}\ \mathsf{N-pole}\ \mathsf{without}\ \mathsf{over-current}\ \mathsf{release}\ \mathsf{unit},\ \mathsf{which}\ \mathsf{closing}\ \mathsf{and}\ \mathsf{opening}\ \mathsf{with}\ \mathsf{the}\ \mathsf{other}\ \mathsf{three}\ \mathsf{poles}.$

Type C: N-pole fixed with over-current release unit, which closing and opening with the other three poles.

Type D: N-pole fixed with over-current release unit, it has been connected all the time, not closing and opening with the other three poles.

1. The limiting breaking and arc-over distance includes horizontal and vertical installation.

2. If the three-pole breaker of this series is connected with three phase load, the load can not

have neutral line, otherwise the breaker will have fault action.

3. If the three-pole breaker of this series is connected with single phase load, the phase line willbe connected to the left pole, and the neutral line is connected to the right pole, the middle

pole is blanket

3. Protection Characteristic

The thermal release of the breaker has again-time-limit property; the electromagnetic release is inst. Operation, its property see table 2(for distribution),table 3 (motor protection).

			Table 2		
Rated current of release (A)	Thermal release (ambie	Electromagnetic release tripping			
Rated current of release (A)	1.05In(cold state) non-trip time (h)	1.03In(hot state) trip time (h)	current(A)		
10≤In≤63	1	1	401- + 20%		
63≤In≤125	2	2	– 10In±20%		
125≤In≤630	2	2	5In±20% 10In±20%		

Table 3

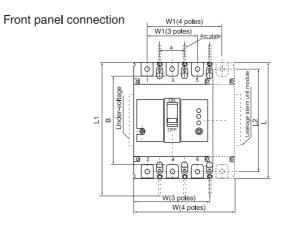
Rated current of	Т	Electromagnetic			
release (A)	1.0In(cold state) non-trip time(h)	1.20In(heat state) trip time (h)	1.50In(heat state) trip time (h)	7.2In(cold state) trip time(h)	release tripping current(A)
10≤In≤400	2	2	8min	6s <tp≦20s< td=""><td>12In±20%</td></tp≦20s<>	12In±20%

4. Residual Current Operating Time of Earth Leakage Circuit Breaker

4.1 Non-delay type operation characteristics see table 4(I \triangle n \leq 30mA should be Non-delay type)

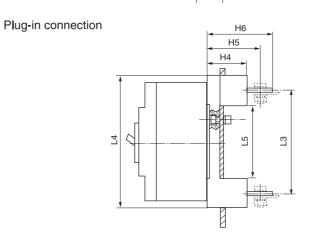
					Table 4
Rateo	d current	$I \bigtriangleup n$	$2I \bigtriangleup n$	5I ∆ na	10l $ riangle$ n
Non-delay type	Max.breaking time(s)	0.3	0.15	0.04	0.04

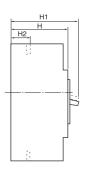
Note: ato I \bigtriangleup n≤30mA earth leakage circuit breaker, 0.25A can instead of 5I \bigtriangleup n According toa,


adopt 0.25A, then 10 I \bigtriangleup n is 0.5A.


4.2 Delay type operation characteristics see table 5

Limiting non-driven time of delay type earth leakage circuit breaker according to $2l \triangle n$, operation characteristics see table 5


5. Outline and Installation Dimensions


								Outl	ine di	mens	sions								Installation				
Туре		Front panel connection								Back panel connection			Plug-in connection							dimensions			
	W	L	Н	W1	L1	L2	H1	H2	L3	HЗ	D	L4	L5	H4	H5	H6	С	D	D1	А	В	d	
JM1L-100M,H/3P	92	150	92	60	200	200	132	110	28.5	90	93	168	92	50	64	76	60	56	6.5	30	129	4.5	
JM1L-100M,H/4P	122	150	92	90	200	200	132	104	28.5	90	93	168	92	50	64	76	60	56	6.5	30	129	4.5	
JM1L-225M,H/3P	107	165	90	70	265	265	144	110	24	93	100	183	94	50	71.5	86.5	90	54	6.5	35	126	5.5	
JM1L-225M,H/4P	142	165	103	105	265	265	144	127	24	93	100	183	94	50	710.5	86.5	70	54	6.5	35	126	5.5	
JM1L-400M,H/3P	150	257	106.5	96	441	441	224	146.5	38	164	108.5	279	-	60	83.5	106.5	105	129	8.5	44	194	7	
JM1L-400M,H/4P	198	257	106.5	144	441	441	224	146.5	38	164	108.5	279	-	60	83.5	106.5	70	129	8.5	44	194	7	
JM1L-630M,H/3P	210	280	115.5	145	480	480	243	155	45.3	158	84	296	-	61	97	148	140	143	10	70	243	7	
JM1L-630M,H/4P	280	280	115.5	210	480	480	243	155	45.5	158	84	296	-	61	97	148	210	143	10	70	243	7	

